WMI Providers

Provider Application Framework

Chapter 12 of “Developing WMI Solutions” covers how developers can develop their own WMI
providers. One of the most powerful features of Windows Management Instrumentation (WMI) is that it
allows developers to expose their own management objects through a provider. WMI offers a lot of
infrastructure that makes writing providers reasonably straightforward. The application framework
described here makes writing WMI providers even easier.

Getting started

Discussion of this application framework assumes knowledge of C++ and WMI provider development.
For more information about writing WMI providers, read Chapter 12. The following guide will re-
implement the fruit basket WMI provider example discussed in Chapter 12.

There are two versions of this framework. One for Windows 2000 which uses the Platform SDK
provided code for parsing object paths and there’s code to parse WQL queries. The Windows XP and
Server 2003 version uses the Operating System provided object path parser and query parser.

Let’s start by creating a new project and describing the tasks you should do to get a provider up and
running.

1) Create a new ATL-based project with Visual Studio 6.0.
2) Add an ATL Class and specify Custom for the interface type field.

3) Open the .idl file and remove references to the newly created interface. Then insert the
sections in the following highlighted IDL code:
inmport "oaidl.idl";
inmport "ocidl.idl";
inport "wbenprov.idl";

[
uui d(67033001-B1D4-4074- A4C9- 9DCA40E412E9) ,

version(1.0),
hel pstring("Af xXWWM Provi der Sanple 1.0 Type Library")

]
I'i brary AFXWM PROVI DERSAMPLELI b

{
importlib("stdole32.tlb");
inmportlib("stdole2.tlb");

[
uui d(BACFF311- AA23- 4C5D- A769- 5172894D2E74) ,

hel pstring("FruitBasket Class")
]

cocl ass FruitBasket

{
[default] interface |WenProviderlnit;
interface | WenServices;

Gwyn Cole WMI Provider Application Framework Page 1 of 25

b
b
If you're planning for your provider to also be an event provider, then you should also add
interface | WbenEvent Provi der in the coclass’s interface list.

4) The stdafx.h file should define _ATL_FREE_THREADED instead of _ATL_APARTMENT_THREADED
(which is added by default by the ATL class wizard). You must include the WMI Provider
framework by including WMIProvider.h and define the WM PROVI DER_COMPONENTNANME symbol
with a unique name for your provider (note this should be #defined before including
WMIProvider.h. For example:

#define _ATL_FREE_THREADED
#i ncl ude <atl base. h>

#defi ne WM PROVI DER_COVMPONENTNAME L"WM Provi der _Sanpl e"
#i ncl ude <WM Provi der. h>

5) If you are developing an out-of-process COM server, ensure that you call
ColnitializeSecurity inthe project's main .cpp file. Out-of-process WMI provider security
will be covered in another article. Do something similar to this:

ColnitializeSecurity(0, -1, 0, 0, RPC_C_AUTHN LEVEL_ CONNECT,
RPC_C_| MP_LEVEL_| MPERSONATE, 0, EOAC NONE, 0);

6) Open the header file with the coclass definition. Make sure it looks something like the
following. The highlighted sections show the changes you make:

cl ass CFruitBasket
public CComObj ect Root ,
publ i c CComCoCl ass<CFrui t Basket, &CLSI D_Fr ui t Basket >,
public I WeenProviderlnitlnpl <CFruitBasket>,
public | WenServi cesl npl <CFrui t Basket >

{
public:
CFrui t Basket () {}
BEGI N_COM_MAP(CFr ui t Basket)
COM_| NTERFACE_ENTRY(| WbenPr ovi derlnit)
COM_| NTERFACE_ENTRY(| WbenSer vi ces)
END_COM_MAP()
b

7) Setup a .mof file that registers your provider with WMI which may also optionally include
the WMI management classes that the provider will expose. For more information on how

to do this, go to Chapter 12.

Now we are ready to move forward by discussing each provider function and how to implement it using
the framework.

Provider initialization

On occasion you may need to perform specific initialization of the provider. The template class
I WenPr ovi der | ni t 1 mpl provides a default implementation of the | WhenSer vi ces: : I ni ti al i ze method. To

add your own initialization, override the Onl ni ti al i ze method and ensure that it is defined as publ i c.

void Onlnitialize(LPWTR wszUser, LONG | Fl ags, LPWSTR wszNanespace,
I WbenCont ext *pCtx);

Gwyn Cole WMI Provider Application Framework Page 2 of 25

The default implementation keeps a reference to the | WbenSer vi ces interface provided by WMI in the
member, m spWensSer vi ces. If required, m spWenser vi ces can be used within the Onl ni ti al i ze method.

Providing management object enumeration

Providing management object enumeration is considered best practice, perhaps even a requirement.
As you will have gathered from Chapter 12, WMI instance providers can expose one or more
management classes. All requests that are passed to the provider include the management class and it
is up to the provider how it processes requests when several supported classes are involved. The most
common method to solve this is to use a technique of routing requests for a specific class to a specific
function. The instance provider sample in Chapter 12 used this approach and so does this provider
framework. Use the BEGI N_ENUM_| NSTANCE_MAP macro to start the mapping between management
classes and the functions that will serve the requests. Each management class supported by the
provider should have an entry in the map. The ENUM_| NSTANCE_ENTRY macro is used to route
management class enumeration requests to a function responsible with exposing the enumeration.
Finally, the enumeration map is completed with the END_ENUM | NSTANCE_MAP macro. The following code
highlighted in bold shows the map and the functions that will expose the enumeration.

cl ass CFruitBasket
publ i c CComObj ect Root ,
publ i c CComCoCl ass<CFr ui t Basket, &CLSI D_Fr ui t Basket >,
public | WbenmProvi der | nitl npl <CFruit Basket >,
public I WenServicesl npl <CFr ui t Basket >

{
public:
BEGH N_ENUM | NSTANCE_MAP()
ENUM_| NSTANCE_ENTRY(L" Sanpl eW nNET_Basket ", OnBasket| nstances)
ENUM | NSTANCE_ENTRY(L" Sanpl eW nNET_Fruit", OnFruitlnstances)
ENUM _| NSTANCE_ENTRY(L" Sanpl eW nNET_Basket Frui t Menber shi p",
OnFrui t Basket | nst ances)
END_ENUM | NSTANCE_MAP()
private:
voi d OnBasket | nstances(CWem nstanceli st& instList, LPWBEMVETHODCTX ptrs);
void OnFruitlnstances(CWem nstanceli st& instList, LPWBEMMETHODCTX ptrs);
voi d OnFruitBasket| nstances(CWem nstancelLi st & instList,
LPWBEMVETHODCTX ptrs);
h

To understand the basics of implementing the enumeration function, let’s look at a simple example:

voi d CSonmeProvi der : : OnExanpl el nst ances(CWbem nst anceli st & i nst Li st,
LPWBEMVETHODCTX ptrs)
{
while (not end of the enumeration)
{
/'l Create managenent object
LPWBEM NSTANCE pl nst = CreateWenl nstance(ptrs);

if (plnst)

{
/1 Set managenent object properties
pl nst- >Set Property(L"Sone Property", CConBSTR(some string));
pl nst- >Set Property(L"Anot her Property", int(some value));

Gwyn Cole WMI Provider Application Framework Page 3 of 25

/1 Add managenent object to collection
i nstList.Add(plnst);

}

Within the while loop, call Cr eat ewbem nst ance to create a management object which you intend to
expose. Cr eat eWbem nst ance knows which type of object to create because it gets the class name from
the pt r s parameter. The next step involves setting all the management object’s properties that you want
to expose. Finally, add the new management object to the collection which is immediately passed to
WMI and forwarded to the client. The following code is the implementation of the OnBasket I nst ances
method.

voi d CFruit Basket : : OnBasket | nst ances(CWbem nst anceli st & i nstList,
LPVWBEMVETHODCTX ptrs)

{
USES_CONVERSI ON;

/'l Cet basket instances from basket registry key
CRegKey regBasket Enum
LONG | Reg = regBasket Enum Open(HKEY_LOCAL_MACHI NE,
_T(" Sof t war e\ \ WM BookPr ov\\ Basket "), KEY_ENUMERATE_SUB_KEYS) ;

if (1 Reg == ERROR_SUCCESS)
{
DWORD dwRegl ndex = 0;
LONG | RegBasket = O;

do
{

/1 Enum t he basket key entries

WCHAR szBasket Name[128] ;

| RegBasket = RegEnunKeyW regBasket Enum dwRegl ndex++,
szBasket Nane, 128);

if (| RegBasket == ERROR_SUCCESS)
{

/'l Create instancel!
LPWBEM NSTANCE pl nst = Creat eWbenm nstance(ptrs);

if (plnst)
{
/] Set property
pl nst - >Set Property(L"Name", szBasket Name);

/1 Get other basket properties
CConmBSTR bstr Basket Pat h(L" Sof t war e\ \ WM BookPr ov\\ Basket\\");
bst r Basket Pat h += szBasket Nane;

CRegKey regBasket;
| Reg = regBasket. Open(HKEY_LOCAL_MACHI NE,
OLE2T(bstrBasket Pat h), KEY_QUERY_VALUE);

if (1 Reg == ERROR_SUCCESS)
{
DWORD dwCapacity = O;
| Reg = regBasket. QueryVal ue(dwCapacity, _T("Capacity"));

Gwyn Cole WMI Provider Application Framework Page 4 of 25

if (1 Reg == ERROR_SUCCESS)

{
CConVari ant var Capacity((int)dwCapacity);
var Capaci ty. ChangeType(VT_Ul 1);

/1 Set other properties
pl nst - >Set Property(L" Capacity", varCapacity);

}

/1 Add instance to collection of instances!
i nstList.Add(plnst);

}
}
while (I RegBasket == ERROR_SUCCESS);

}

The Cwbemi nst anceli st class is discussed later in the “Framework public classes” section. You can view
the code for the method OnFrui t | nst ances by checking the source code.

Let’s look at the OnFrui t Basket | nst ances method in more detail because this exposes an association
management class. The main difference in implementation is that properties of an association class
include reference properties and these are set with a call to Set Obj Pat hProper ty and not Set Property
(like in the previous example). Set Obj Pat hPr operty requires a WBEMKEYREFS array which represents the
key properties of the management object reference. Each element in the array is a key property of the
reference. In the fruit basket sample, both the fruit and basket management objects have one key
property.

Each WBEMKEYREFS array element needs to know the name (I pszKeyRef Name) of the key property; the CIM
data type (ci m ypeVal ue) of the key property; and finally the value (var KeyRef Val ue) of the key property.

Let's have a look at the implementation:

voi d CFruitBasket:: OnFrui t Basket | nst ances(CWbem nst anceli st & i nstLi st,
LPWBEMVETHODCTX ptrs)

{
TBasket Frui t Map mapFruit;
Get EnunFrui t Map(mapFruit);

TBasket FruitMap::iterator itrFruit = mapFruit.begin();
for (; itrFruit !'= mapFruit.end(); itrFruit++)
{

/1l Create instance!
LPWBEM NSTANCE pl nst = CreateWenl nstance(ptrs);

if (plnst)
{
/| Basket reference
VWBEMKEYREFS keyRef[1];
keyRef [0] .| pszKeyRef Name = _T("Nanme");
keyRef[0].cintypeVal ue = CI M_STRI NG,
keyRef [0] . var KeyRef Val ue =
CConVariant ((*itrFruit).second. szBasket Name.c_str());

pl nst->Set Obj Pat hProperty(_T(" Sanpl eW nNET_Basket "),
_T("Basket"), keyRef, 1);

/'l Fruit reference

Gwyn Cole WMI Provider Application Framework Page 5 of 25

keyRef [0] .| pszKeyRef Name = _T("Nane");
keyRef[0].cintypeVal ue = CI M_STRI NG,
keyRef [0] . var KeyRef Val ue = CConVariant ((*itrFruit).first.c_str());

pl nst->Set Obj Pat hProperty(_T(" Sanpl eW nNET_Fruit"),
_T("Fruit"), keyRef, 1);

i nstList.Add(plnst);

}

The first parameter to Set Obj Pat hProper ty is the name of the referenced management class. The
second parameter is the name of the reference property. The third parameter is the array of

WBEMKEYREFS structures and the last parameter indicates how many elements there are in the array.

Providing management object retrieval

Providing the ability to retrieve a specific management object is considered best practice, perhaps even
a requirement. It's very irritating when you cannot browse a specific management object in CIM Studio
because the provider only exposes the enumeration. To provide management object retrieval, use the
BEGI N_OBJECT_| NSTANCE_MAP macro to start the mapping between management classes and the
functions that will serve the requests. Each management class supported by the provider should have
an entry in the map. The OBJECT_I NSTANCE_ENTRY macro is used to route management class retrieval
request to a function responsible with exposing it. Finally, the map is completed with the
END_OBJECT_I NSTANCE_MAP macro. The following code highlighted in bold shows the map and the
functions that will expose the retrieved management object.

cl ass CFruitBasket

{
public:
BEGI N_OBJECT_| NSTANCE_MAP()
OBJECT_|I NSTANCE_ENTRY(L" Sanpl eW nNET_Basket", OnBasket Obj ect)
OBJECT_I NSTANCE_ENTRY(L" Sanpl eW nNET_Fruit", OnFruit Object)
OBJECT_I NSTANCE_ENTRY(L" Sanpl eW nNET_Basket Frui t Member shi p",
OnFrui t Basket Obj ect)
END_OBJECT_| NSTANCE_MAP()
private:
voi d OnBasket Obj ect (LPWBEM NSTANCE pl nstance, |ong | Flags);
voi d OnFruit Obj ect (LPWBEM NSTANCE pl nstance, |ong | Fl ags);
voi d OnFruit Basket Obj ect (LPWBEM NSTANCE pl nstance, long | Fl ags);
h

To understand the basics of implementing the retrieval function, let's look at a simple example:

voi d CSoneProvi der:: OnExanpl e Obj ect (LPVWBEM NSTANCE pl nstance, |ong | Fl ags)
{

/'l Get key properties from managnment object request
CComBSTR bstr KeyPropl = BSTR(pl nstance->Get Property(L"Sone Property"));
CConmBSTR bstrKeyProp2 = BSTR(pl nstance->CGet Property(L"Anot her Property"));

bool bFound = fal se;
I

/1 TODO: Find object within your own |ocal cache. Set bFound accordingly...
11

Gwyn Cole WMI Provider Application Framework Page 6 of 25

if (bFound)

{
// Set other managenent object properties
pl nstance->Set Property(L"My Property 1", varPropl);
pl nstance- >Set Property(L"My Property 2", varProp2);
pl nstance- >Set Property(L"My Property 3", varProp3);
}
el se
{
/'l Object not found, throw this exception which will get caught
/'l by the framework.
VWM Thr owHRESULT(WBEM_E_NOT_FOUND) ;
}

}

The management object to be exposed is already created by the framework and is passed into the
function via the pl nst ance parameter. The next step involves getting the key properties so that the
existence of the management object can be identified. If it does exist, set the rest of the management
object’s properties. If it doesn't exist, throw a WBEM_E_NOT_FOUND HRESULT exception. On leaving the
routing function, the management object is immediately passed to WMI and is forwarded to the client.
The following code is the implementation of the onBasket Obj ect method.

voi d CFruit Basket:: OnBasket Obj ect (LPWBEM NSTANCE pl nstance, |ong | Fl ags)

{
/Il Get key property, this contains the value for which object is required
bool bFound = fal se;
CComBSTR bstrName = BSTR(pl nstance->Cet Property(L"Nane"));
/1 Build registry path
CComBSTR bstr Basket Pat h(L" Sof t war e\ \ WM BookPr ov\ \ Basket\\ ") ;
bstrBasket Path += bstr Nanme;
CRegKey regBasket;
LONG | Reg = regBasket. Open(HKEY_LOCAL_MACHI NE, OLE2T(bst r Basket Pat h),
KEY_QUERY_VALUE) ;
if (1 Reg == ERROR_SUCCESS)
{
/'l Registry entry exists for basket
bFound = true;
/1 Get other basket properties
DWORD dwCapacity = 0;
| Reg = regBasket. QueryVal ue(dwCapacity, _T("Capacity"));
if (1 Reg == ERROR_SUCCESS)
{
CConVari ant var Capacity((int)dwCapacity);
var Capaci ty. ChangeType(VT_Ul 1);
/'l Set property!!
pl nst ance->Set Property(L" Capacity", varCapacity);
}
}
if (!bFound)
VWM Thr owHRESULT(WBEM_E_NOT_FOUND) ;
}

Gwyn Cole WMI Provider Application Framework Page 7 of 25

The CWwbeml nst ance class pointed to by LPWBEM NSTANCE is discussed later in the “Framework public
classes” section. You can view the code for the methods OnFr ui t Obj ect and OnFr ui t Basket Obj ect by
checking the source code. OnFrui t Basket Obj ect makes use of CWbenObj ect Pat h to parse the reference
object path and is also discussed in more detail in the “Framework public classes” section.

Providing management object creation and update

Depending on the management classes that a provider exposes, some may need the ability to create

and update management objects. Use the BEGI N_PUT_| NSTANCE_MAP macro to start the mapping between
management classes and the functions that will serve the requests. Each management class supported
by the provider should have an entry in the map. The PUT_I NSTANCE_ENTRY macro is used to route a
management class put request to a function responsible with persisting the change. Finally, the map is
completed with the END_PUT_I NSTANCE_MAP macro. Note that if a management class does not support
creation or update operations, it should use the PUT_I NSTANCE_ENTRY_NOTSUPPORTED macro. If this is not
done the return code from the provider will indicate that the class is invalid, which is not the case. The
following code highlighted in bold shows the map and the functions that will provide management object
creation and update operations.

cl ass CFruitBasket

{
public:
BEGI N_PUT_I NSTANCE_MAP()
PUT_I NSTANCE_ENTRY(L" Sanpl eW nNET_Basket ", nBasket Put)
PUT_I NSTANCE_ENTRY(L" Sanpl eW nNET_Fruit", OnFruitPut)
PUT_| NSTANCE_ENTRY_NOTSUPPORTED(L" Sanpl eW nNET_Basket Frui t Menrber shi p")
END_PUT_| NSTANCE_MAP()
private:

voi d OnBasket Put (LPWBEM NSTANCE pl nstance, |ong | Fl ags);
voi d OnFruit Put (LPVBEM NSTANCE pl nstance, |ong | Fl ags);

voi d OnFruitBasket Obj ect (LPWBEM NSTANCE pl nstance, long | Fl ags);

HRESULT Updat eBasket (LPWBEM NSTANCE pl nst ance) ;

HRESULT Updat eFrui t (LPWBEM NSTANCE pl nstance, LPCWSTR | pszFruit RegPath);
voi d Get Enunfruit Map(TBasket Frui t Map& map) ;

bool FindFruitlnMap(LPCWSTR | pszFruitName, TBasket FruitMap& nmap);

}s

To understand the basics of implementing management object creation and update operations, let's
look at a simple example:

voi d CSomeProvi der:: OnExanpl e Put (LPWBEM NSTANCE pl nstance, |ong | Fl ags)
{
if (I Flags == WBEM _FLAG _CREATE_OR_UPDATE)
{
CConBSTR bstrKeyProp = BSTR(pl nstance- >Get Property(L"Some Property"));
bool bFound = Fi ndMgnt Obj ect (bstr KeyProp);

if (bFound)
/'l Updat e management obj ect
el se
; I/ Create managenment obj ect
}
else if (IFlags & WBEM FLAG UPDATE_ONLY)
{

Gwyn Cole WMI Provider Application Framework Page 8 of 25

}

CConBSTR bstrKeyProp = BSTR(pl nstance->Get Property(L"Some Property"));
bool bFound = Fi ndMgnt Obj ect (bstr KeyProp);

if (bFound)
; /1 Update managenment obj ect
el se
WM Thr owHRESULT(WBEM_E_NOT_FOUND) ;
}
else if (IFlags & WBEM FLAG CREATE_ONLY)

{
CConmBSTR bstrKeyProp = BSTR(pl nstance->Get Property(L"Some Property"));

bool bFound = Fi ndMgnt Obj ect (bstr KeyProp);

if (bFound)
WM Thr owHRESULT(WVBEM_E_ALREADY_EXI STS) ;
el se
; /1 Update managenment obj ect
}

el se

{
}

WM Thr owHRESULT(WBEM _E_| NVALI D_PARANETER) ;

There are three flags that determine how the provider should process the changes of the put operation.
These are WBEM_FLAG_CREATE_OR_UPDATE, WBEM_FLAG_UPDATE_ONLY and WBEM_FLAG_CREATE_ONLY. The
meaning of each flag should be intuitive. Note that WMI HRESULTS are thrown for certain conditions
where the request should fail. As you will see in the next code sample, you may need to throw other
HRESULTSs depending on what type of put operations the provider supports.

The management object to be created or updated is contained in the pl nst ance parameter. The
provider should get all the properties it cares about from the management object and perform the
appropriate tasks to persist the changes. On leaving the routing function, either the management object
is persisted or the operation failed. The following code is the implementation of the onBasket Put

method.

voi d CFruitBasket:: OnBasket Put (LPWBEM NSTANCE pl nstance, |ong | Fl ags)

{

Gwyn Cole

if (IFlags == WBEM _FLAG CREATE_OR_UPDATE)

{
CConBSTR bstrBasket Name = BSTR(pl nstance->Get Property(L"Nane"));
bool bFound = Fi ndBasket (bstrBasket Name) ;

if (bFound)
{
HRESULT hr = Updat eBasket (pl nstance);

if (FAILED(hr))
WM Thr owHRESULT(hr) ;
}
el se
{
VWM Thr owHRESULT(WBEM_E_ UNSUPPORTED_PUT_EXTENSI ON) ;
}
}
else if (IFlags & WBEM FLAG UPDATE_ONLY)
{
CConBSTR bstrBasket Name = BSTR(pl nstance->Get Property(L"Nane"));
bool bFound = Fi ndBasket (bstrBasket Nane) ;

WMI Provider Application Framework Page 9 of 25

if (bFound)

{
HRESULT hr = Updat eBasket (pl nstance);

if (FAILED(hr))
WM Thr owHRESULT(hr) ;
}

el se

{
WM Thr owHRESULT(WBEM_E_NOT_FOUND) ;

}

}
else if (IFlags & WBEM FLAG CREATE_ONLY)

{
WM Thr owHRESULT(WBEM_E_UNSUPPORTED_PUT_EXTENSI ON) ;

}

el se

{
WM Thr owHRESULT(WBEM_E_| NVALI D_PARAMETER) ;

}
}
Notice the use of the WMI HRESULT WBEM_E_UNSUPPORTED_PUT_EXTENSI ON to indicate that the requested
operation failed. The next code sample shows the function, Updat eBasket , which persists the properties
from the management object passed in by the WMI client. The code in bold highlight shows an example
of transferring the values from properties to the local cache (in this case, the registry).

HRESULT CFruit Basket: : Updat eBasket (LPWBEM NSTANCE pl nst ance)
HRESULT hr = WBEM_S_NO_ERROR;

/Il Get the basket that is required for the update
CConBSTR bst rBasket Nane = BSTR(pl nstance- >Get Property(L"Name"));

/1l Build the registry path and open the basket key
CConmBSTR bst r Basket Pat h(L" Sof t war e\ \ WM BookPr ov\ \ Basket\\ ") ;
bstrBasket Path += bstrBasket Nane;

CRegKey regBasket;
LONG | Reg = regBasket. Open(HKEY_LOCAL_MACHI NE, OLE2T(bstr Basket Pat h),
KEY_WRI TE) ;

/'l Get other properties

CComvari ant var Capacity;

pl nst ance->Get Propert yVari ant (L" Capacity", &varCapacity);

| Reg = regBasket. Set Val ue(DWORD(V_UI 1(&var Capacity)), _T("Capacity"));

if (IReg != ERROR_SUCCESS)
hr = WBEM_E_PROVI DER_FAI LURE;

return hr;

}

Providing management object deletion

Like creating and updating management objects, depending on the type of classes that the provider
exposes, some management classes may support delete operations. Use the

Gwyn Cole WMI Provider Application Framework Page 10 of 25

BEG N_DELETE_I NSTANCE_MAP macro to start the mapping between management classes and the
functions that will serve the requests. Each management class supported by the provider should have

an entry in the map. The DELETE_I NSTANCE_ENTRY macro is used to route a management class delete
request to a function responsible with deleting the management object. Finally, the map is completed
with the END_DELETE | NSTANCE_MAP macro. Note that if a management class does not support delete
operations, it should use the DELETE_| NSTANCE_ENTRY_NOTSUPPORTED mactro. If this is not done the return
code from the provider will indicate that the class is invalid, which is not the case. The following code
highlighted in bold shows the map and the only supported routing function, OnBasket Del et e.

cl ass CFruit Basket

{
public:
BEGI N_DELETE_I NSTANCE_MAP()
DELETE_| NSTANCE_ENTRY(L" Sanpl eW nNET_Basket", OnBasket Del ete)
DELETE_I NSTANCE_ENTRY_NOTSUPPORTED(L" Sanpl eW nNET_Frui t")
DELETE_I NSTANCE_ENTRY_NOTSUPPORTED(L" Sanpl eW nNET_Basket Fr ui t Menber shi p")
END_DELETE_I NSTANCE_MAP()

private:
voi d OnBasket Del et e(LPWBEM NSTANCE pl nstance, long | Flags);

b
To understand the basics of implementing a deletion function, let's look at a simple example:

voi d CSoneProvi der:: OnExanpl eDel et e(LPM\BEM NSTANCE pl nstance, |ong | Fl ags)

{
CConmBSTR bstrKeyProperty = BSTR(plnstance->Get Property(L"Sone Property"));

// TODO: Find and del ete managenent object fromlocal cache

if (operation failed)

{
}

WM Thr owHRESULT(WBEM_E_PROVI DER_FAI LURE) ;

}

The management object to be deleted is passed by the framework through the pl nst ance parameter.
The provider’s next step is to obtain the key properties and locate the management object within its

own local cache and remove it. If delete operation fails, the provider should throw a

WBEM_E_PROVI DER_FAI LURE HRESULT exception. On leaving the routing function, either the management
object has been removed or the request failed. The following code is the implementation of the

OnBasket Del et e method.

voi d CFruit Basket:: OnBasket Del et e(LPMBEM NSTANCE pl nstance, |ong | Fl ags)

{
USES_CONVERSI ON;
CConBSTR bstrBasket Pat h(L" Sof t war e\\ WM BookPr ov\ \Basket");
/'l Check basket exists?
CRegKey regBasket ;
LONG | Reg = regBasket. Open(HKEY_LOCAL_MACHI NE, OLE2T(bstrBasket Path),
KEY_WRI TE) ;

if (I Reg == ERROR_SUCCESS)

Gwyn Cole WMI Provider Application Framework Page 11 of 25

CConmBSTR bst rBasket Nanme = BSTR(pl nstance- >Get Property(L"Name"));

/'l Delete basket fromregistry
| Reg = regBasket. RecurseDel et eKey(OLE2T(bst r Basket Nane)) ;

}

if (I Reg ! = ERROR_SUCCESS)

{
VWM Thr owHRESULT(WBEM_E_PROVI DER_FAI LURE) ;

}
}

Providing management query optimization

WMI allows providers to optimize the resulting collection of management objects they return to WMI.
Providers do not have to fully parse the WQL query and return the exact required set of management
objects to WMI. WMI will do this which is very useful when dealing with complex queries and it also
allows for a quicker development time to implement this optimization. To provide management query
optimization, use the BEGI N_QUERY_I NSTANCE_MAP macro to start the mapping between management
classes and the functions that will serve the requests. Each management class supported by the
provider should have an entry in the map. The QUERY_I NSTANCE_ENTRY macro is used to route
management class retrieval request to a function responsible with exposing it. Finally, the query map is
completed with the END_QUERY_I NSTANCE_MAP macro. Note that if a management class does not support
query optimization, it should use the QUERY_I NSTANCE_ENTRY_NOTSUPPORTED macro. If this is not done the
return code from the provider will indicate that the class is invalid, which is not the case. The following
code highlighted in bold shows the map and the functions that will expose the query optimization

filtered management objects.

class CFruitBasket

{
public:
BEGI N_QUERY_| NSTANCE_MAP()
QUERY_| NSTANCE_ENTRY(L" Sanpl eW nNET_Basket ", OnBasket Query)
QUERY_I NSTANCE_ENTRY_NOTSUPPORTED(L" Sanpl eW nNET_Fruit")

QUERY_| NSTANCE_ENTRY_NOTSUPPORTED(L" Sanpl eW nNET_Basket Fr ui t Memmber shi p*)
END_ENUM_| NSTANCE_MAP()

private:
voi d OnBasket Query(CWhenQuery& query, CWbenl nstanceli st& instList,

LPWBEMVETHODCTX ptrs);

h
Implementing the query optimization function involves limiting the number of management objects and
properties returned to WMI. The optimization can include; only retrieving property values that have
been requested. i.e. SELECT Propl, Prop2 FROM Cl M SomeCl ass WHERE PropA="Soneval ue".Where the
only properties that are requested are Propl and Prop2. However you should not forget to include Pr opA
because WMI will need this information to process more complex queries. The more common
optimization is to retrieve a subset of the relevant management objects. That is, evaluating the portion
of the query “Pr opA=" Soneval ue"” where Soneval ue defines the scope of the query and will have a huge
impact on performance. Supporting both forms of optimization will increase the performance of the
provider. If the query is too complex, always result to retrieving all the management objects and
passing them to WMI. WMI will handle the query for you. Let’s look at an incomplete example of what
the function would look like:

Gwyn Cole WMI Provider Application Framework Page 12 of 25

voi d CFruit Basket: : OnBasket Query(CWhenmQuery& query,
CWbeml nst anceli st & i nstList,

LPWBEMVETHODCTX ptrs)

{
if (the basket exists)
{
/1l Add basket instance to instList
I [Al'so, only get properties that are requested in either the
I property list or the properties nmentioned after the WHERE cl ause]
}
el se
{
// Otherw se, the query is too conplex for us so return all
/'l instances to WM and let it process the query
OnBasket | nstances(instList, ptrs);
}
}

The query is passed in the query parameter. The management object enumeration is returned to WMI
through the i nst Li st parameter.

Providing management class and object methods

A WMI provider can also service WMI method requests. To provide method implementations for
management classes and objects, use the BEGI N_METHOD_MAP macro to start the mapping between

management method and the functions that will serve the request. Each management method
supported by the provider should have an entry in the map. The METHOD_ENTRY mactro is used to route

management methods based on class name and method name to a function responsible with exposing
it. Finally, the management method map is completed with the END_METHOD _MAP macro. The following

code highlighted in bold shows the map and the functions that will expose the one and only
management method.

cl ass CFruit Basket

{
public:
BEGI N_METHOD_MAP()
METHOD_ENTRY(L" Sanpl eW nNET_Fruit", L"AddFruitToBasket",
OnFrui t AddFrui t ToBasket)
END_METHOD_MAP()
private:
voi d OnFrui t AddFrui t ToBasket (LPWBEM NSTANCE pl nst ance,
LPCWSTR | pszObj ect Pat h, CWenMet hod& r Met hod, 1ong | Fl ags);
b

To understand the basics of implementing a management method function, let’s look at a simple
example:

voi d CSomeProvi der:: OnExanpl eMet hod(LPVWBEM NSTANCE pl nst ance,
LPCWSTR | pszObj ect Pat h, CWwbemVet hod& r Met hod, | ong | Fl ags)

{
WM Func();
bool bRetVal = true;

try

Gwyn Cole WMI Provider Application Framework Page 13 of 25

/1 Get the nethod's in-paranmeters
CComBSTR bstrlnParaml = BSTR(r Met hod. Get | nParam(L" | nParanl"));
CComBSTR bstr | nParan2 = BSTR(r Met hod. Get | nPar am(L" | nPar am2")) ;

/1 TODO: Do sonething. ..

/'l Set the nethod's out-paraneters
r Met hod. Set Qut Par am(L" Qut Paraml", L"Some val ue");
r Met hod. Set OQut Par am(L" Qut Param2", int(2));

}

WM Cat ch()

/1 Set method's return val ue
r Met hod. Ret ur n(bRet Val) ;

}

The management method implementation first obtains the in-parameters for instruction about what to
do. This is followed by the actual task which is later followed by setting the management method’s out-
parameters including the return value. The following code is the implementation of the

OnFr ui t AddFrui t ToBasket method.

voi d CFrui tBasket:: OnFrui t AddFrui t ToBasket (LPWBEM NSTANCE pl nst ance,
LPCWSTR | pszObj ect Pat h, CWemMet hod& r Met hod, | ong | Fl ags)

{
USES_CONVERSI ON;

WM Func();
bool bRetVal = false;

try
{

/1 Get the nmethod's in-paranmeters
CConBSTR bst r Basket Name = BSTR(r Met hod. Get | nPar an{ L" Basket Narme")) ;
CComBSTR bstrFruitName = BSTR(rMet hod. Get | nPar an{ L" Frui t Nane")) ;

/1 Snsure that we have both paraneters
if (bstrBasket Nane.Length() > 0 && bstrFruitName.Length() > 0)
{

/'l Hel per function to create a map of all the basket and

/] fruit itens
TBasket Frui t Map mapFruit;
Get Enunfrui t Map(mapFruit);

if (FindFruitlnMap(bstrFruitName, mapFruit))

{ /1 We can't add the fruit itemit is already added to a basket
hr = WBEM E_ALREADY_EXI STS;

}

el se

{

/1 Fruit name not used. Can create and assign the itemof fruit.
wstring szBasket Pat h(L" Sof t war e\ \ WM BookPr ov\ \ Basket\\");
szBasket Pat h += bstr Basket Namne;

/1l Create the basket if it doesn't already exist
CRegKey regBasket ;
LONG | Reg = regBasket . Creat e(HKEY_LOCAL_MACHI NE,
W CT(szBasket Path.c_str()), NULL, REG OPTI ON_NON_VOLATI LE,

Gwyn Cole WMI Provider Application Framework Page 14 of 25

Gwyn Cole

{
}
}
}
}
WM Cat ch()

KEY_WRI TE) ;
(1 Reg == ERROR_SUCCESS)

/1 Add Fruit itemto basket
wstring szFruitPath(szBasket Path);
szFruitPath += L"\\";

szFruitPath += bstrFruitNane;

/'l Create and assign item of fruit

CRegKey regFruit;

LONG | Reg = regFruit. Creat e(HKEY_LOCAL_MACHI NE,
W2CT(szFruitPath.c_str()), NULL, REG OPTI ON_NON_VOLATI LE,
KEY_WRI TE) ;

if (1 Reg == ERROR_SUCCESS)
bRet Val = true; /1 Used in WM nethods return val ue

/1 Set method's return val ue
r Met hod. Ret ur n(bRet Val) ;

WMI Provider Application Framework Page 15 of 25

Framework public classes

The WMI Provider Framework consists of a number of C++ templates (Table 1) that help to quickly
implement instance, method and event WMI providers. Table 2 lists the classes that are used in the
C++ templates and provide easy access to management objects, paths, methods, etc... Table 3 lists
the functions that may be of use during a providers execution.

Table 1: Provider COM interface C++ template classes

C++ template class Comment

I WoenPr ovi der I ni t | npl This C++ template class implements the | WbenPr ovi der | ni t
COM interface. It provides basic provider initialization.

I WbentSer vi cesl npl This C++ template class implements the | WhenSer vi ces COM
interface. It provides basic provider implementation for all provider
instance and method operations. Implementation’s of each type of
operation is routed through macros to C++ functions responsible
for servicing the requests.

I Wben nt er nal Event Provi der | npl | This C++ template class implements the | WoenEvent Pr ovi der
COM interface. It provides an implementation that allows the

provider to fire events from within other operations of the instance
or method provider.

Table 2: Provider C++ classes

C++ class Comment

CWbemObj ect Pat h A helper class that parses and creates object paths.

CWbemQuery A helper class to parse WQL and SQL management queries. This
helps to break down a query when implementing provider query
optimization.

CWbem nst ance This class represents a management object.

CWbenl nst anceli st This class represents a collection of management objects.

CWemivet hod This class makes it easy to set and get method parameters when
implementing a method provider.

CWbemvar i ant Cast A helper class to cast a VARIANT into a C++ equivalent type.

WBEMKEYREFS This is a structure used to represent a key property in an object
path.

Table 3: Provider C++ helper functions

Helper functions Comment
Get Thi sConput er Nane Returns the current computer name.
Get Cl i ent Bl anket Name Returns the name of the user (principle) making the DCOM call.

This function is useful when implementing provider routing
methods to determine who is making the request.

Gwyn Cole WMI Provider Application Framework Page 16 of 25

IWbemProviderlnitimpl template class

This class provides abasic provider initialization implementation. The derived class should override

Onl ni ti al i ze for specific provider initialization. The m spwenser vi ces member is the provider's
management services interface provided by WMI. Here is the public interface of the template class:

tenpl ate <class T>
class | WenProviderlnitlnpl : public |WenProviderlnit

{
public:
CConPt r <| WbentSer vi ces> m spWbenfSer vi ces;
/'l You can derive fromthis in your base class
void Onlnitialize(LPWSTR wszUser, LONG | Fl ags, LPWSTR wszNamespace,
LPWSTR wszLocal e, | WenContext *pCtx)
{
}
STDMETHOD(I nitialize) (LPWSTR wszUser, LONG | Fl ags,
LPWSTR wszNanespace, LPWSTR wszlLocal e,
| WbenServi ces *pNamespace, |WenContext *pCtx,
I WbenProvi der |l nitSink *plnitSink);
h
itiali

STDMETHOD(I nitialize) (LPWSTR wszUser, LONG | Fl ags,
LPWSTR wszNanmespace, LPWSTR wszlLocal e,
| WhenSer vi ces *pNanmespace, |WenContext *pCtx,
| WbenPr ovi der | ni t Si nk *pl nitSink)

This method adds a reference to the management services provided by WMI and stores it in the
m_spWensSer vi ces member. The implementation of I niti ali ze calls Oninitialize. Thisis where you
should add your own provider initialization.

IWbemServiceslmpl template class

This template class implements the routing of management requests to the appropriate method
handler. The methods listed in the following class are the ones implemented by the template class. All
other methods return WBEM_E_NOT_SUPPORTED. Here is the public interface of the template class:

tenpl ate <typenanme T>
class | WhenSServi ceslnpl : public | WenServices

{
public:

STDMETHOD(Get Obj ect Async) (const BSTR Obj ect Path, [ong | Fl ags,
I WbenCont ext *pCtx, |WhemObject Sink *pResponseHandl er);

STDMETHOD(Put | nst anceAsync) (| WhenCl assObj ect *plnst, |ong | Fl ags,
I WbenCont ext *pCtx, |WemObjectSink *pResponseHandl er);

STDMETHOD(Del et el nst anceAsync) (const BSTR Obj ect Path, |ong | Fl ags,
I WbenCont ext *pCtx, |WenmObjectSink *pResponseHandl er);

STDMETHOD(Cr eat el nst anceEnumAsync) (const BSTR Cl ass, |ong | Fl ags,
I WbenCont ext *pCtx, |WemObjectSink *pResponseHandl er);

STDMETHOD(ExecQuer yAsync) (const BSTR QuerylLanguage, const BSTR Query,
long | Fl ags, | WenContext *pCtx, |WenObjectSink *pResponseHandl er);

Gwyn Cole WMI Provider Application Framework Page 17 of 25

STDMETHOD(ExecMet hodAsync) (const BSTR str Obj ect Path, const BSTR str Mt hodNane,
long | Fl ags, |WenContext *pCtx, |WenClassObject *plnParans,
I WbenObj ect Si nk *pResponseHandl er) ;

LPWBEM NSTANCE Cr eat eWbem nst ance(LPMBEMVETHODCTX ptrs);
b
GetObjectAsync method

This method is implemented by using the following macros to route the request to a member function.

BEG N_OBJECT_| NSTANCE_MAP()
OBJECT_| NSTANCE_ENTRY(L" Sanpl e_Cl ass", OnObj ect)
END_OBJECT_| NSTANCE_MAP()
The member function prototype is:

voi d OnObj ect (LPWBEM NSTANCE pl nstance, |ong | Fl ags);

The requested management object specified using key properties is passed in through pl nst ance and it
is the provider’s responsibility to set the remaining non-key properties of the management object.

PutinstanceAsync method

This method is implemented by using the following macros to route the request to a member function.

BEGI N_PUT_I NSTANCE_MAP()

PUT_I NSTANCE_ENTRY(L" Sanpl e_Cl ass", OnPut)

PUT_I NSTANCE_ENTRY_NOTSUPPORTED(L" Sanpl e_Ct her Cl ass")
END_PUT_I NSTANCE_MAP()

The member function prototype is:
voi d OnPut (LPWBEM NSTANCE pl nstance, |ong | Fl ags);

The new or updated management object is passed in through pl nst ance and it is the provider's
responsibility to persist the changes depending on the flags passed in by | FI ags. If the provider

supports a management class, but not for this operation, it should declare it using,
PUT_I NSTANCE_ENTRY_NOTSUPPORTED.

DeletelnstanceAsync method
This method is implemented by using the following macros to route the request to a member function.

BEGI N_DELETE_I NSTANCE_MAP()

DELETE_| NSTANCE_ENTRY(L" Sanpl e_Cl ass", OnDel et e)

DELETE_I NSTANCE_ENTRY_NOTSUPPORTED(L" Sanpl e _Ot her Cl ass")
END_DELETE_| NSTANCE_MAP()

The member function prototype is:
voi d OnDel et e(LPWBEM NSTANCE pl nstance, |ong |Fl ags);

The management object to be deleted is passed in through pl nst ance and it is the provider’s
responsibility to read the key properties and remove the object. If the provider supports a management
class, but not for this operation, it should declare it using, DELETE_| NSTANCE_ENTRY_NOTSUPPORTED.

CreatelnstanceEnumAsync method

This method is implemented by using the following macros to route the request to a member function.

BEGI N_ENUM _| NSTANCE_MAP()
ENUM_| NSTANCE_ENTRY(L" Sanpl e_Cl ass", Onl nstances)
END_ENUM _| NSTANCE_MAP()

The member function prototype is:

Gwyn Cole WMI Provider Application Framework Page 18 of 25

voi d Onl nstances(CWem nstanceLi st& instList, LPWBEMMETHODCTX ptrs);

Management objects are returned through i nst Li st and the current context is passed through ptrs.

The context is always used when making calls back to WMI from within a provider. The context may
also have additional context provided by the client/caller that the provider can understand.

ExecQueryAsync method

This method is implemented by using the following macros to route the request to a member function.

BEGI N_QUERY_| NSTANCE_MAP()

QUERY_| NSTANCE_ENTRY(L" Sanpl e_Cl ass", OnQuery)

QUERY_| NSTANCE_ENTRY_NOTSUPPORTED(L" Sanpl e_Ot her Cl ass")
END_ENUM_| NSTANCE_MAP()

The member function prototype is:
voi d OnQuery(CWhemuery& query, CWenl nstanceli st& instList, LPWBEMVETHODCTX ptrs);

The management query is passed in through query and the cwhemQuery class can be used to parse it.
Management objects are returned through i nst Li st and the current context is passed through ptrs.

The context is always used when making calls back to WMI from within a provider. The context may
also have additional context provided by the client/caller that the provider can understand. If the

provider supports a management class, but not for this operation, it should declare it using,
QUERY_| NSTANCE_ENTRY_NOTSUPPORTED.

ExecMethodAsync method

This method is implemented by using the following macros to route the request to a member function.

BEGI N_METHOD_MAP()
METHOD_ENTRY(L" Sanpl e_Cl ass", L"SoneMethod", OnSomeMet hod)
END_METHOD_ MAP()

The member function prototype is:

voi d OnSonmeMet hod(LPWBEM NSTANCE pl nst ance, LPCWSTR | pszObj ect Pat h,
CWenmvet hod& r Met hod, | ong | Flags);

If the method pertains to a management object, then the provider should get the key properties from
pl nst ance to identify which object the method reeds to execute against. If you need to the object path,

then you can get at it directly through | pszObj ect Pat h. The method’s in and out parameters and be
obtained and set through r Met hod.

CreateWbemInstance method

LPWBEM NSTANCE Cr eat eWenl nst ance(LPWBEMVETHODCTX ptrs);

This helper method creates an instance of the same type as that identified by the provider's context.
The caller is responsible for releasing the return value.

IWbemlnternalEventProviderlmpl template class

This template class is only for use within a WMI instance of method provider. On many occasions, a
provider may want to fire an event while it is processing a request. The provider should call Fi r eEvent

whenever it is ready to fire an event. Here is the public interface of the template class:
tenpl ate <class T>

class | Wem nt er nal Event Provi derl npl : public |WenEventProvider

{
public:
CConPt r <I WbemObj ect Si nk> m_spEvent Si nk;

public:
STDMETHOD(Pr ovi deEvent s) (| WbenObj ect Si nk *pSi nk, |ong | Fl ags);

Gwyn Cole WMI Provider Application Framework Page 19 of 25

voi d FireEvent (CWem nstance& event) ;
h
FireEvent method

voi d FireEvent (CWem nstance& event);

This method fires an event within an instance or method provider. The event to be fired should be
passed in event . Let's look at an example of how you can do this to fire a new fruit basket
__InstanceCreati onEvent event.

/1

/| Basket just created! Fire event

/1

CWbem nst ance event;

pl nst ance->Creat el nstanceOf Cl ass(L"__I nstanceCreati onEvent", event);

/1 Set target instance nanagenent obj ect

CWem nst ance event Target | nst;

pl nst ance->Creat el nst anceCOf Cl ass(L" Sanpl eW n2K_Basket", event Targetlnst);
event Tar get | nst. Set Property(L"Name", bstrBasket Nane);

event Tar get | nst. Set Property(L" Capacity", int(0));

CConPt r <| WenCl assCObj ect > spTarget|nst;
event Target I nst. Getlnstance(&spTargetlnst);

CConPt r <I Unknown> spUnk;
spTarget I nst. Querylnterface(&spUnk);
CConvari ant var Target|nst (spUnk);

/1 Add target instance to event
event. Set Property(L"Target| nstance", varTargetlnst);

/1l Fire managenment event
FireEvent (event);

If you are planning to fire events within a provider, remember to inherit from it. For example:

cl ass CFruit Basket
publ i c CComObj ect Root ,
public CComCoCl ass<CFrui t Basket, &CLSI D_Fr ui t Basket >,
public | WbenProvi derlnitlnpl <CFruitBasket >,
public | WhenServi cesl npl <CFr ui t Basket >,
public | Wenl nternal Event Provi der | npl <CFr ui t Basket >

{
public:

CFrui t Basket () {}
h

Don't forget to setup the .mof file to register your provider as an event provider. For more information
on how to do this, go to Chapter 12.

CWbemObjectPath class

This class helps you to parse management object paths. The meaning of the methods in the class
below should be intuitive and easy to understand. The Windows 2000 version of this class defers
slightly but produces the same functionality.

Gwyn Cole WMI Provider Application Framework Page 20 of 25

cl ass CWbenmObj ect Pat h

{

public:
CWbenmObj ect Pat h(LPCWSTR | pszPat h) ;
~CWhemObj ect Pat h() ;

voi d Get Cl assNanme(CConBSTR& bstrCl ass);

bool |sKeyValid(DWORD dwKeyl ndex) ;

bool Get Key(DWORD dwKeyl ndex, CConBSTR& bstr KeyNane);

bool Get KeyVari ant (DWORD dwKeyl ndex, CConWVari ant & var KeyVal ue);

bool Get KeyVari ant (LPCWSTR | pszPropNanme, CConVari ant & var PropVal ue);

/'l Helper to get at the inplenmentation provided by the VWM

voi d Get Obj ect Pat h(| WhenPat h** ppPat h);

voi d Get Obj ect Pat hKeyLi st (| WbemPat hKeyLi st ** ppKeyLi st);
h

CWbemQuery class

This class helps you to parse management queries. The implementation of this class is limited under
Windows XP/Server 2003 because it uses the query facilities provided by WMI. Refer to MSDN for
more information. The Windows 2000 version provides many more methods to extract details of the

query.

cl ass CWhemQuery

{
public:
CWemQuer y(LPCWSTR | pszWQLQuery, LPCWSTR | pszQuerylLang = L"WQL");

/1 ** NOTE!!l This is a weak reference!!!
voi d Cet Par sedQuery(SWhenmRpnEncodedQuery** ppEncodedQuery);

void ExtractClass(wstring& rszCl ass);

}s

CWbeminstance class

This class includes common operations that you might want to perform with a management object. It is
used by the provider framework and has some useful helper functions. Here is the public interface of

the class:

cl ass CWhem nstance

{
public:

CWbeml nst ance();
CWbenl nst ance(| WenCl assObj ect* plnst);
CWbenl nst ance(LPWBEMVETHODCTX ptrs);

voi d Create(lWenCl assObj ect* plnst);
void Create(LPCWSTR | pszCl assNane, LPCWSTR | pszNanespace = L"root\\ Cl W2");
voi d Create(LPVBEMVETHODCTX ptrs, LPCWSTR | pszNanespace = L"root\\ Cl wW2");

voi d Createl nstanceByKeyPat h(LPCWSTR | pszObj ect Pat h, Cwbem nstance& rlnst);
voi d Creat eFakel nst anceByKeyPat h(LPCWSTR | pszCbj ect Pat h, CWbemnl nstance& rlnst);
voi d Createl nstanceOf Cl ass(LPCWSTR | pszCl ass, CWbem nstance& rlnst);

CWbemvar i ant Cast Get Property(LPCWSTR | pszPropNane) ;
voi d GetPropertyVariant (LPCWSTR | pszPropName, VARI ANT* pVal ue);

Gwyn Cole WMI Provider Application Framework Page 21 of 25

tenpl ate <cl ass Val Type>
voi d SetProperty(LPCWSTR | pszPropNane, Val Type val ue);

voi d Set PropertyVariant (LPCWSTR | pszPropNanme, VARI ANT* pVal ue);

voi d Set Obj Pat hProperty(LPCWSTR | pszCl assName, LPCWSTR | pszPropNane,
WBEMKEYREFS ppKeyRefs[], int nCount);

voi d I ndicate();

voi d Getlnstance(lWenCl assObj ect** pplnstance);
I WbenCl assObj ect * Getl nst anceWeakRef erence();

h
Create method
These methods setup a CWem nst ance object.

void Create(lWenCl assObj ect* plnst);
voi d Create(LPCWSTR | pszCl assNanme, LPCWSTR | pszNamespace = L"root\\Cl W2");
voi d Create(LPNBEMVETHODCTX ptrs, LPCWSTR | pszNanespace = L"root\\Cl W2");

The first method basically attaches an existing management object to the class and adds a reference.

The second method creates a new instance of a specific class and attaches to it. The third method
creates a new instance of the class specified by the context and attaches to it.

CreatelnstanceByKeyPath method

This helper method performs an | WenSer vi ces: : Get Obj ect call and attaches to the returned
management object.

voi d Createl nstanceByKeyPat h(LPCWSTR | pszObj ect Pat h, CWem nstance& rlnst);

Pass the object path into the | pszObj ect Pat h parameter and if successful, the management object is
returned through r I nst .

CreateFakelnstanceByKeyPath method

This helper method creates an in-memory instance of the management object represented by the
object path. The key properties in the object path are set as properties on the newly created instance.
This is useful when you want an 1 WenCl assObj ect of the supposed management object.

voi d Creat eFakel nst anceByKeyPat h(LPCWSTR | pszObj ect Pat h, CwWbenl nstance& rlnst);

Pass the object path into the | pszObj ect Pat h parameter and if successful, the fake management object
is returned through r I nst.

CreatelnstanceOfClass method

This helper method creates a new instance of a specific class.
voi d Createl nstanceOf Cl ass(LPCWSTR | pszCl ass, CwWhem nstance& rinst);

Pass the class reference into the | pszCl ass parameter and if successful, the new instance is returned
through r I nst.

GetProperty and GetPropertyVariant methods
These methods return the value of a management object property.

CWbenwVari ant Cast Get Property(LPCWSTR | pszPropNane) ;
voi d Get PropertyVari ant (LPCWSTR | pszPropName, VARI ANT* pVal ue);

The first method returns the property value through Cwenvar i ant Cast which casts VARIANT data types

to C++ data types. The second method returns the raw variant value for the property. This is useful for
dealing with SAFEARRAY-based VARIANTS.

Gwyn Cole WMI Provider Application Framework Page 22 of 25

SetProperty and SetPropertyVariant methods
These methods set the value of a management object property.

tenpl ate <cl ass Val Type>
voi d Set Propert y(LPCWSTR | pszPropNanme, Val Type val ue);
voi d Set PropertyVari ant (LPCWSTR | pszPropName, VARI ANT* pVal ue);

The first method sets the property value by using CComvari ant 's constructor. This enables you to use
C++ data types for many of the properties you're likely to come across. The second method sets a raw
variant value for the property. This is useful for dealing with SAFEARRAY -based VARIANTS.

SetObjPathProperty method

This helper method helps you set properties that are management object references.

voi d Set Obj Pat hProperty(LPCWSTR | pszCl assName, LPCWSTR | pszPropNane,
WBEMKEYREFS ppKeyRefs[], int nCount);

The name of the management class that will be referenced is passed through | pszCl assNane and the
name of the property in the attached instance (i.e. the class that contains the reference) is passed
through I pszPr opName. For each key property of the class passed in through | pszCl assNane must be
setup. The number of array elements in ppKeyRef s is passed through nCount . The following is an extract
from some code described earlier in this article.

/| Basket reference
WBEMKEYREFS keyRef[1];

keyRef [0] .| pszKeyRef Name = L"Name";

keyRef [0] .ci ntypeVal ue = CI M_STRI NG,

keyRef [0] . var KeyRef Val ue =

CConVariant((*itrFruit).second. szBasket Nane.c_str());

pl nst- >Set Obj Pat hProperty(L" Sanpl eW nNET_Basket", L"Basket", keyRef, 1);
Indicate method
This method is used to pass the management object to WMI.

voi d I ndicate();
Getlnstance and GetinstanceWeakReference methods
These methods return the attached | WenCl assObj ect instance.

voi d Getlnstance(lWenCl assObj ect** pplnstance);
I WbenCl assObj ect * Getl nst anceWeakRef erence();

Calling Get | nst ance adds a reference and Get | nst anceWeakRef er ence doesn't.

CWbemlnstanceList class

This class holds a collection of management objects. Calling Add will include the management object
specified through pl nst to the collection. If an object of the class is setup with a WMI provided sink, Add
also calls I ndi cat e to pass the management object to WMI. Del et eAl | removes all the management
object references from the collection.

cl ass CWbem nstanceli st : public std::|ist<LPWBEM NSTANCE>

{
public:
CWbem nst anceli st (1 WbenObj ect Si nk* pResponse = NULL);
~CWbenl nst ancelLi st ();
voi d Add(CWbeml nstance* plnst);
voi d Del eteAll ();
h

Gwyn Cole WMI Provider Application Framework Page 23 of 25

CWbemMethod class

This class represents a method. You can get the method's in-parameters by calling Get | nPar amand the
out-parameters can be set using Set Cut Par am Use Ret ur n to set the methods return value.

class CWem\vet hod

{
public:
Cwem\vet hod() ;
CWbemvet hod(LPMBEMVETHODCTX ptrs, LPCWSTR | pszMet hodNane,
I WbenCl assObj ect * pl nParans) ;
CWbenvari ant Cast Get | nPar am(LPCWSTR | pszPropNane) ;
tenpl ate <typenane Val Type>
voi d Set Qut Par am(LPCWSTR | pszPropNane, Val Type val ue);
tenpl ate <typename Val Type>
voi d Return(Val Type val ue);
h

ExecMethodAsync method

This method is implemented by using the following macros to route the request to a member function.

CWbemVariantCast class

This class converts VARIANTSs to C++ data types. The class below shows which data types are
converted.

cl ass CWhenVari ant Cast

{

public:
CWhemvar i ant Cast (CComvari ant & v, bool bTakeOwnership = false);
CWbenvari ant Cast (const VARI ANT& V) ;

operator int();

operator long();
operator Ul NT();
oper at or DWORD() ;
operat or BYTE();
operator short();
operat or bool ();
operator BSTR();

}s

WBEMKEYREFS class

Although not for public use, this class allows the provider’s control callback function to set current
provider state and also set session handles in shared memory. This is then accessed by the
CTraceEvent class when tracing events. This implementation design allows DLLs and COM components
to fire events for the tracing session held by the provider.

struct WBEMKEYREFS

{
LPCWSTR | pszKeyRef Namne;
CI MTYPE ci nmt ypeVal ue;
CConVari ant var KeyRef Val ue;
h

Gwyn Cole WMI Provider Application Framework Page 24 of 25

GetThisComputerName function
This returns the name of the current machine through r szName.
inline bool GetThisConputerName(wstring& rszNane);

GetClientBlanketName function
This returns the name of the principle/user who is accessing the provider through szPri nci pl eNane.

inline void GetClientBlanket Name(wstri ng& szPrinci pl eNane)

Gwyn Cole WMI Provider Application Framework Page 25 of 25

