
http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 1 of 25

WMI Providers

Provider Application Framework

Chapter 12 of “Developing WMI Solutions” covers how developers can develop their own WMI
providers. One of the most powerful features of Windows Management Instrumentation (WMI) is that it
allows developers to expose their own management objects through a provider. WMI offers a lot of
infrastructure that makes writing providers reasonably straightforward. The application framework
described here makes writing WMI providers even easier.

Getting started

Discussion of this application framework assumes knowledge of C++ and WMI provider development.
For more information about writing WMI providers , read Chapter 12. The following guide will re-
implement the fruit basket WMI provider example discussed in Chapter 12.

There are two versions of this framework. One for Windows 2000 which uses the Platform SDK
provided code for parsing object paths and there’s code to parse WQL queries. The Windows XP and
Server 2003 version uses the Operating System provided object path parser and query parser.

Let’s start by creating a new project and describing the tasks you should do to get a provider up and
running.

1) Create a new ATL-based project with Visual Studio 6.0.

2) Add an ATL Class and specify Custom for the interface type field.

3) Open the .idl file and remove references to the newly created interface. Then insert the
sections in the following highlighted IDL code:

import "oaidl.idl";
import "ocidl.idl";
import "wbemprov.idl";

[
 uuid(67033001-B1D4-4074-A4C9-9DC440E412E9),
 version(1.0),
 helpstring("AfxWMIProviderSample 1.0 Type Library")
]
library AFXWMIPROVIDERSAMPLELib
{
 importlib("stdole32.tlb");
 importlib("stdole2.tlb");

 [
 uuid(BACFF311-AA23-4C5D-A769-5172894D2E74),
 helpstring("FruitBasket Class")
]
 coclass FruitBasket
 {
 [default] interface IWbemProviderInit;
 interface IWbemServices;

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 2 of 25

 };
};

If you’re planning for your provider to also be an event provider, then you should also add
interface IWbemEventProvider in the coclass’s interface list.

4) The stdafx.h file should define _ATL_FREE_THREADED instead of _ATL_APARTMENT_THREADED
(which is added by default by the ATL class wizard). You must include the WMI Provider
framework by including WMIProvider.h and define the WMIPROVIDER_COMPONENTNAME symbol
with a unique name for your provider (note this should be #defined before including
WMIProvider.h. For example:

#define _ATL_FREE_THREADED
#include <atlbase.h>
...
.... .
..
#define WMIPROVIDER_COMPONENTNAME L"WMIProvider_Sample"
#include <WMIProvider.h>

5) If you are developing an out-of-process COM server, ensure that you call
CoInitializeSecurity in the project’s main .cpp file. Out -of-process WMI provider security
will be covered in another article. Do something similar to this:

CoInitializeSecurity(0, -1, 0, 0, RPC_C_AUTHN_LEVEL_CONNECT,
 RPC_C_IMP_LEVEL_IMPERSONATE, 0, EOAC_NONE, 0);

6) Open the header file with the coclass definition. Make sure it looks something like the
following. The highlighted sections show the changes you make:

class CFruitBasket :
 public CComObjectRoot,
 public CComCoClass<CFruitBasket,&CLSID_FruitBasket>,
 public IWbemProviderInitImpl<CFruitBasket>,
 public IWbemServicesImpl<CFruitBasket>
{
public:
 CFruitBasket() {}

 BEGIN_COM_MAP(CFruitBasket)
 COM_INTERFACE_ENTRY(IWbemProviderInit)
 COM_INTERFACE_ENTRY(IWbemServices)
 END_COM_MAP()

 ..
};

7) Setup a .mof file that registers your provider with WMI which may also optionally include
the WMI management classes that the provider will expose. For more information on how
to do this, go to Chapter 12.

Now we are ready to move forward by discussing each provider function and how to implement it using
the framework.

Provider initialization
On occasion you may need to perform specific initialization of the provider. The template class
IWbemProviderInitImpl provides a default implementation of the IWbemServices::Initialize method. To
add your own initialization, override the OnInitialize method and ensure that it is defined as public.

 void OnInitialize(LPWSTR wszUser, LONG lFlags, LPWSTR wszNamespace,
 IWbemContext *pCtx);

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 3 of 25

The default implementation keeps a reference to the IWbemServices interface provided by WMI in the
member, m_spWbemServices. If required, m_spWbemServices can be used within the OnInitialize method.

Providing management object enumeration

Providing management object enumeration is considered best practice, perhaps even a requirement.
As you will have gathered from Chapter 12, WMI instance providers can expose one or more
management classes. All requests that are passed to the provider include the management class and it
is up to the provider how it processes requests when several supported classes are involved. The most
common method to solve this is to use a technique of routing requests for a specific class to a specific
function. The instance provider sample in Chapter 12 used this approach and so does this provider
framework. Use the BEGIN_ENUM_INSTANCE_MAP macro to start the mapping between management
classes and the functions that will serve the requests. Each management class supported by the
provider should have an entry in the map. The ENUM_INSTANCE_ENTRY macro is used to route
management class enumeration requests to a function responsible with exposing the enumeration.
Finally, the enumeration map is completed with the END_ENUM_INSTANCE_MAP macro. The following code
highlighted in bold shows the map and the functions that will expose the enumeration.

class CFruitBasket :
 public CComObjectRoot,
 public CComCoClass<CFruitBasket,&CLSID_FruitBasket>,
 public IWbemProviderInitImpl<CFruitBasket>,
 public IWbemServicesImpl<CFruitBasket>
{

 ...
 .
public:
 BEGIN_ENUM_INSTANCE_MAP()
 ENUM_INSTANCE_ENTRY(L"SampleWinNET_Basket", OnBasketInstances)
 ENUM_INSTANCE_ENTRY(L"SampleWinNET_Fruit", OnFruitInstances)
 ENUM_INSTANCE_ENTRY(L"SampleWinNET_BasketFruitMembership",
 OnFruitBasketInstances)
 END_ENUM_INSTANCE_MAP()

private:
 void OnBasketInstances(CWbemInstanceList& instList, LPWBEMMETHODCTX ptrs);
 void OnFruitInstances(CWbemInstanceList& instList, LPWBEMMETHODCTX ptrs);
 void OnFruitBasketInstances(CWbemInstanceList& instList,

 LPWBEMMETHODCTX ptrs);

 ..
};

To understand the basics of implementing the enumeration function, let’s look at a simple example:

void CSomeProvider::OnExampleInstances(CWbemInstanceList& instList,
 LPWBEMMETHODCTX ptrs)

{
 while (not end of the enumeration)
 {
 // Create management object
 LPWBEMINSTANCE pInst = CreateWbemInstance(ptrs);

 if (pInst)
 {
 // Set management object properties
 pInst->SetProperty(L"Some Property", CComBSTR(some string));
 pInst->SetProperty(L"Another Property", int(some value));

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 4 of 25

 // Add management object to collection
 instList.Add(pInst);
 }
 }
}

Within the while loop, call CreateWbemInstance to create a management object which you intend to
expose. CreateWbemInstance knows which type of object to create because it gets the class name from
the ptrs parameter. The next step involves setting all the management object’s properties that you want
to expose. Finally, add the new management object to the collection which is immediately passed to
WMI and forwarded to the client. The following code is the implementation of the OnBasketInstances
method.

void CFruitBasket::OnBasketInstances(CWbemInstanceList& instList,
 LPWBEMMETHODCTX ptrs)
{
 USES_CONVERSION;

 // Get basket instances from basket registry key
 CRegKey regBasketEnum;
 LONG lReg = regBasketEnum.Open(HKEY_LOCAL_MACHINE,
 _T("Software\\WMIBookProv\\Basket"), KEY_ENUMERATE_SUB_KEYS);

 if (lReg == ERROR_SUCCESS)
 {
 DWORD dwRegIndex = 0;
 LONG lRegBasket = 0;

 do
 {
 // Enum the basket key entries
 WCHAR szBasketName[128];
 lRegBasket = RegEnumKeyW(regBasketEnum, dwRegIndex++,
 szBasketName, 128);

 if (lRegBasket == ERROR_SUCCESS)
 {
 // Create instance!
 LPWBEMINSTANCE pInst = CreateWbemInstance(ptrs);

 if (pInst)
 {
 // Set property
 pInst->SetProperty(L"Name", szBasketName);

 // Get other basket properties
 CComBSTR bstrBasketPath(L"Software\\WMIBookProv\\Basket\\");
 bstrBasketPath += szBasketName;

 CRegKey regBasket;
 lReg = regBasket.Open(HKEY_LOCAL_MACHINE,
 OLE2T(bstrBasketPath), KEY_QUERY_VALUE);

 if (lReg == ERROR_SUCCESS)
 {
 DWORD dwCapacity = 0;
 lReg = regBasket.QueryValue(dwCapacity, _T("Capacity"));

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 5 of 25

 if (lReg == ERROR_SUCCESS)
 {
 CComVariant varCapacity((int)dwCapacity);
 varCapacity.ChangeType(VT_UI1);

 // Set other properties
 pInst->SetProperty(L"Capacity", varCapacity);
 }
 }

 // Add instance to collection of instances!
 instList.Add(pInst);
 }
 }
 }
 while (lRegBasket == ERROR_SUCCESS);
 }
}

The CWbemInstanceList class is discussed later in the “Framework public classes ” section. You can view
the code for the method OnFruitInstances by checking the source code.

Let’s look at the OnFruitBasketInstances method in more detail because this exposes an association
management class. The main difference in implementation is that properties of an association class
include reference properties and these are set with a call to SetObjPathProperty and not SetProperty
(like in the previous example). SetObjPathProperty requires a WBEMKEYREFS array which represents the
key properties of the management object reference. Each element in the array is a key property of the
reference. In the fruit basket sample, both the fruit and basket management objects have one key
property.

Each WBEMKEYREFS array element needs to know the name (lpszKeyRefName) of the key property; the CIM
data type (cimtypeValue) of the key property; and finally the value (varKeyRefValue) of the key property.

Let’s have a look at the implementation:

void CFruitBasket::OnFruitBasketInstances(CWbemInstanceList& instList,
 LPWBEMMETHODCTX ptrs)
{
 TBasketFruitMap mapFruit;
 GetEnumFruitMap(mapFruit);

 TBasketFruitMap::iterator itrFruit = mapFruit.begin();
 for (; itrFruit != mapFruit.end(); itrFruit++)
 {
 // Create instance!
 LPWBEMINSTANCE pInst = CreateWbemInstance(ptrs);

 if (pInst)
 {
 // Basket reference
 WBEMKEYREFS keyRef[1];
 keyRef[0].lpszKeyRefName = _T("Name");
 keyRef[0].cimtypeValue = CIM_STRING;
 keyRef[0].varKeyRefValue =
 CComVariant((*itrFruit).second.szBasketName.c_str());

 pInst->SetObjPathProperty(_T("SampleWinNET_Basket"),
 _T("Basket"), keyRef, 1);

 // Fruit reference

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 6 of 25

 keyRef[0].lpszKeyRefName = _T("Name");
 keyRef[0].cimtypeValue = CIM_STRING;
 keyRef[0].varKeyRefValue = CComVariant((*itrFruit).first.c_str());

 pInst->SetObjPathProperty(_T("SampleWinNET_Fruit"),
 _T("Fruit"), keyRef, 1);

 instList.Add(pInst);
 }
 }
}

The first parameter to SetObjPathProperty is the name of the referenced management class. The
second parameter is the name of the reference property. The third parameter is the array of
WBEMKEYREFS structures and the last parameter indicates how many elements there are in the array.

Providing management object retrieval

Providing the ability to retrieve a specific management object is considered best practice, perhaps even
a requirement. It’s very irritating when you cannot browse a specific management object in CIM Studio
because the provider only exposes the enumeration. To provide management object retrieval, use the
BEGIN_OBJECT_INSTANCE_MAP macro to start the mapping between management classes and the
functions that will serve the requests. Each management class supported by the provider should have
an entry in the map. The OBJECT_INSTANCE_ENTRY macro is used to route management class retrieval
request to a function responsible with exposing it. Finally, the map is completed with the
END_OBJECT_INSTANCE_MAP macro. The following code highlighted in bold shows the map and the
functions that will expose the retrieved management object.

class CFruitBasket :

{
public:
 BEGIN_OBJECT_INSTANCE_MAP()
 OBJECT_INSTANCE_ENTRY(L"SampleWinNET_Basket", OnBasketObject)
 OBJECT_INSTANCE_ENTRY(L"SampleWinNET_Fruit", OnFruitObject)
 OBJECT_INSTANCE_ENTRY(L"SampleWinNET_BasketFruitMembership",
 OnFruitBasketObject)
 END_OBJECT_INSTANCE_MAP()

private:
 void OnBasketObject(LPWBEMINSTANCE pInstance, long lFlags);
 void OnFruitObject(LPWBEMINSTANCE pInstance, long lFlags);
 void OnFruitBasketObject(LPWBEMINSTANCE pInstance, long lFlags);

 ..

};

To understand the basics of implementing the retrieval function, let’s look at a simple example:

void CSomeProvider::OnExampleObject(LPWBEMINSTANCE pInstance, long lFlags)
{
 // Get key properties from managment object request
 CComBSTR bstrKeyProp1 = BSTR(pInstance->GetProperty(L"Some Property"));
 CComBSTR bstrKeyProp2 = BSTR(pInstance->GetProperty(L"Another Property"));

 bool bFound = false;
 //
 // TODO: Find object within your own local cache. Set bFound accordingly...
 //

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 7 of 25

 if (bFound)
 {
 // Set other management object properties
 pInstance->SetProperty(L"My Property 1", varProp1);
 pInstance->SetProperty(L"My Property 2", varProp2);
 pInstance->SetProperty(L"My Property 3", varProp3);
 }
 else
 {
 // Object not found, throw this exception which will get caught
 // by the framework.
 WMIThrowHRESULT(WBEM_E_NOT_FOUND);
 }
}

The management object to be exposed is already created by the framework and is passed into the
function via the pInstance parameter. The next step involves getting the key properties so that the
existence of the management object can be identified. If it does exist, set the rest of the management
object’s properties. If it doesn’t exist, throw a WBEM_E_NOT_FOUND HRESULT exception. On leaving the
routing function, the management object is immediately passed to WMI and is forwarded to the client.
The following code is the implementation of the OnBasketObject method.

void CFruitBasket::OnBasketObject(LPWBEMINSTANCE pInstance, long lFlags)
{
 // Get key property, this contains the value for which object is required
 bool bFound = false;
 CComBSTR bstrName = BSTR(pInstance->GetProperty(L"Name"));

 // Build registry path
 CComBSTR bstrBasketPath(L"Software\\WMIBookProv\\Basket\\");
 bstrBasketPath += bstrName;

 CRegKey regBasket;
 LONG lReg = regBasket.Open(HKEY_LOCAL_MACHINE, OLE2T(bstrBasketPath),
 KEY_QUERY_VALUE);

 if (lReg == ERROR_SUCCESS)
 {
 // Registry entry exists for basket
 bFound = true;

 // Get other basket properties
 DWORD dwCapacity = 0;
 lReg = regBasket.QueryValue(dwCapacity, _T("Capacity"));

 if (lReg == ERROR_SUCCESS)
 {
 CComVariant varCapacity((int)dwCapacity);
 varCapacity.ChangeType(VT_UI1);

 // Set property!!
 pInstance->SetProperty(L"Capacity", varCapacity);
 }
 }

 if (!bFound)
 WMIThrowHRESULT(WBEM_E_NOT_FOUND);
}

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 8 of 25

The CWbemInstance class pointed to by LPWBEMINSTANCE is discussed later in the “Framework public
classes” section. You can view the code for the methods OnFruitObject and OnFruitBasketObject by
checking the source code. OnFruitBasketObject makes use of CWbemObjectPath to parse the reference
object path and is also discussed in more detail in the “Framework public classes” section.

Providing management object creation and update

Depending on the management classes that a provider exposes, some may need the ability to create
and update management objects. Use the BEGIN_PUT_INSTANCE_MAP macro to start the mapping between
management classes and the functions that will serve the requests. Each management class supported
by the provider should have an entry in the map. The PUT_INSTANCE_ENTRY macro is used to route a
management class put request to a function responsible with persisting the change. Finally, the map is
completed with the END_PUT_INSTANCE_MAP macro. Note that if a management class does not support
creation or update operations, it should use the PUT_INSTANCE_ENTRY_NOTSUPPORTED macro. If this is not
done the return code from the provider will indicate that the class is invalid, which is not the case. The
following code highlighted in bold shows the map and the functions that will provide management object
creation and update operations.

class CFruitBasket :

{
public:
 BEGIN_PUT_INSTANCE_MAP()
 PUT_INSTANCE_ENTRY(L"SampleWinNET_Basket", OnBasketPut)
 PUT_INSTANCE_ENTRY(L"SampleWinNET_Fruit", OnFruitPut)
 PUT_INSTANCE_ENTRY_NOTSUPPORTED(L"SampleWinNET_BasketFruitMembership")
 END_PUT_INSTANCE_MAP()

private:
 void OnBasketPut(LPWBEMINSTANCE pInstance, long lFlags);
 void OnFruitPut(LPWBEMINSTANCE pInstance, long lFlags);
 void OnFruitBasketObject(LPWBEMINSTANCE pInstance, long lFlags);

 HRESULT UpdateBasket(LPWBEMINSTANCE pInstance);
 HRESULT UpdateFruit(LPWBEMINSTANCE pInstance, LPCWSTR lpszFruitRegPath);
 void GetEnumFruitMap(TBasketFruitMap& map);
 bool FindFruitInMap(LPCWSTR lpszFruitName, TBasketFruitMap& map);

 ..

};

To understand the basics of implementing management object creation and update operations , let’s
look at a simple example:

void CSomeProvider::OnExamplePut(LPWBEMINSTANCE pInstance, long lFlags)
{
 if (lFlags == WBEM_FLAG_CREATE_OR_UPDATE)
 {
 CComBSTR bstrKeyProp = BSTR(pInstance->GetProperty(L"Some Property"));
 bool bFound = FindMgmtObject(bstrKeyProp);

 if (bFound)
 ; // Update management object
 else
 ; // Create management object
 }
 else if (lFlags & WBEM_FLAG_UPDATE_ONLY)
 {

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 9 of 25

 CComBSTR bstrKeyProp = BSTR(pInstance->GetProperty(L"Some Property"));
 bool bFound = FindMgmtObject(bstrKeyProp);

 if (bFound)
 ; // Update management object
 else
 WMIThrowHRESULT(WBEM_E_NOT_FOUND);
 }
 else if (lFlags & WBEM_FLAG_CREATE_ONLY)
 {
 CComBSTR bstrKeyProp = BSTR(pInstance->GetProperty(L"Some Property"));
 bool bFound = FindMgmtObject(bstrKeyProp);

 if (bFound)
 WMIThrowHRESULT(WBEM_E_ALREADY_EXISTS);
 else
 ; // Update management object
 }
 else
 {
 WMIThrowHRESULT(WBEM_E_INVALID_PARAMETER);
 }
}

There are three flags that determine how the provider should process the changes of the put operation.
These are WBEM_FLAG_CREATE_OR_UPDATE, WBEM_FLAG_UPDATE_ONLY and WBEM_FLAG_CREATE_ONLY . The
meaning of each flag should be intuitive. Note that WMI HRESULTs are thrown for certain conditions
where the request should fail. As you will see in the next code sample, you may need to throw other
HRESULTs depending on what type of put operations the provider supports.

The management object to be created or updated is contained in the pInstance parameter. The
provider should get all the properties it cares about from the management object and perform the
appropriate tasks to persist the changes. On leaving the routing function, either the management object
is persisted or the operation failed. The following code is the implementation of the OnBasketPut
method.

void CFruitBasket::OnBasketPut(LPWBEMINSTANCE pInstance, long lFlags)
{
 if (lFlags == WBEM_FLAG_CREATE_OR_UPDATE)
 {
 CComBSTR bstrBasketName = BSTR(pInstance->GetProperty(L"Name"));
 bool bFound = FindBasket(bstrBasketName);

 if (bFound)
 {
 HRESULT hr = UpdateBasket(pInstance);

 if (FAILED(hr))
 WMIThrowHRESULT(hr);
 }
 else
 {
 WMIThrowHRESULT(WBEM_E_UNSUPPORTED_PUT_EXTENSION);
 }
 }
 else if (lFlags & WBEM_FLAG_UPDATE_ONLY)
 {
 CComBSTR bstrBasketName = BSTR(pInstance->GetProperty(L"Name"));
 bool bFound = FindBasket(bstrBasketName);

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 10 of 25

 if (bFound)
 {
 HRESULT hr = UpdateBasket(pInstance);

 if (FAILED(hr))
 WMIThrowHRESULT(hr);
 }
 else
 {
 WMIThrowHRESULT(WBEM_E_NOT_FOUND);
 }
 }
 else if (lFlags & WBEM_FLAG_CREATE_ONLY)
 {
 WMIThrowHRESULT(WBEM_E_UNSUPPORTED_PUT_EXTENSION);
 }
 else
 {
 WMIThrowHRESULT(WBEM_E_INVALID_PARAMETER);
 }
}

Notice the use of the WMI HRESULT WBEM_E_UNSUPPORTED_PUT_EXTENSION to indicate that the requested
operation failed. The next code sample shows the function, UpdateBasket, which persists the properties
from the management object passed in by the WMI client. The code in bold highlight shows an example
of transferring the values from properties to the local cache (in this case, the registry).

HRESULT CFruitBasket::UpdateBasket(LPWBEMINSTANCE pInstance)
{
 HRESULT hr = WBEM_S_NO_ERROR;

 // Get the basket that is required for the update
 CComBSTR bstrBasketName = BSTR(pInstance->GetProperty(L"Name"));

 // Build the registry path and open the basket key
 CComBSTR bstrBasketPath(L"Software\\WMIBookProv\\Basket\\");
 bstrBasketPath += bstrBasketName;

 CRegKey regBasket;
 LONG lReg = regBasket.Open(HKEY_LOCAL_MACHINE, OLE2T(bstrBasketPath),
 KEY_WRITE);

 // Get other properties
 CComVariant varCapacity;
 pInstance->GetPropertyVariant(L"Capacity", &varCapacity);

 lReg = regBasket.SetValue(DWORD(V_UI1(&varCapacity)), _T("Capacity"));

 if (lReg != ERROR_SUCCESS)
 hr = WBEM_E_PROVIDER_FAILURE;

 return hr;
}

Providing management object deletion
Like creating and updating management objects, depending on the type of classes that the provider
exposes, some management classes may support delete operations. Use the

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 11 of 25

BEGIN_DELETE_INSTANCE_MAP macro to start the mapping between management classes and the
functions that will serve the requests. Each management class supported by the provider should have
an entry in the map. The DELETE_INSTANCE_ENTRY macro is used to route a management class delete
request to a function responsible with deleting the management object. Finally, the map is completed
with the END_DELETE_INSTANCE_MAP macro. Note that if a management class does not support delete
operations, it should use the DELETE_INSTANCE_ENTRY_NOTSUPPORTED macro. If this is not done the return
code from the provider will indicate that the class is invalid, which is not the case. The following code
highlighted in bold shows the map and the only supported routing function, OnBasketDelete.

class CFruitBasket :

{
public:
 BEGIN_DELETE_INSTANCE_MAP()
 DELETE_INSTANCE_ENTRY(L"SampleWinNET_Basket", OnBasketDelete)
 DELETE_INSTANCE_ENTRY_NOTSUPPORTED(L"SampleWinNET_Fruit")
 DELETE_INSTANCE_ENTRY_NOTSUPPORTED(L"SampleWinNET_BasketFruitMembership")
 END_DELETE_INSTANCE_MAP()

private:
 void OnBasketDelete(LPWBEMINSTANCE pInstance, long lFlags);

 ..

};

To understand the basics of implementing a deletion function, let’s look at a simple example:

void CSomeProvider::OnExampleDelete(LPWBEMINSTANCE pInstance, long lFlags)
{
 CComBSTR bstrKeyProperty = BSTR(pInstance->GetProperty(L"Some Property"));

 // TODO: Find and delete management object from local cache

 if (operation failed)
 {
 WMIThrowHRESULT(WBEM_E_PROVIDER_FAILURE);
 }
}

The management object to be deleted is passed by the framework through the pInstance parameter.
The provider’s next step is to obtain the key properties and locate the management object within its
own local cache and remove it. If delete operation fails, the provider should throw a
WBEM_E_PROVIDER_FAILURE HRESULT exception. On leaving the routing function, either the management
object has been removed or the request failed. The following code is the implementation of the
OnBasketDelete method.

void CFruitBasket::OnBasketDelete(LPWBEMINSTANCE pInstance, long lFlags)

{

 USES_CONVERSION;

 CComBSTR bstrBasketPath(L"Software\\WMIBookProv\\Basket");

 // Check basket exists?
 CRegKey regBasket;
 LONG lReg = regBasket.Open(HKEY_LOCAL_MACHINE, OLE2T(bstrBasketPath),
 KEY_WRITE);

 if (lReg == ERROR_SUCCESS)

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 12 of 25

 {
 CComBSTR bstrBasketName = BSTR(pInstance->GetProperty(L"Name"));

 // Delete basket from registry
 lReg = regBasket.RecurseDeleteKey(OLE2T(bstrBasketName));
 }

 if (lReg != ERROR_SUCCESS)
 {
 WMIThrowHRESULT(WBEM_E_PROVIDER_FAILURE);
 }
}

Providing management query optimization
WMI allows providers to optimize the resulting collection of management objects they return to WMI.
Providers do not have to fully parse the WQL query and return the exact required set of management
objects to WMI. WMI will do this which is very useful when dealing with complex queries and it also
allows for a quicker development time to implement this optimization. To provide management query
optimization, use the BEGIN_QUERY_INSTANCE_MAP macro to start the mapping between management
classes and the functions that will serve the requests. Each management class supported by the
provider should have an entry in the map. The QUERY_INSTANCE_ENTRY macro is used to route
management class retrieval request to a function responsible with exposing it. Finally, the query map is
completed with the END_QUERY_INSTANCE_MAP macro. Note that if a management class does not support
query optimization, it should use the QUERY_INSTANCE_ENTRY_NOTSUPPORTED macro. If this is not done the
return code from the provider will indicate that the class is invalid, which is not the case. The following
code highlighted in bold shows the map and the functions that will expose the query optimization
filtered management objects.

class CFruitBasket :

{
public:
 BEGIN_QUERY_INSTANCE_MAP()
 QUERY_INSTANCE_ENTRY(L"SampleWinNET_Basket", OnBasketQuery)
 QUERY_INSTANCE_ENTRY_NOTSUPPORTED(L"SampleWinNET_Fruit")
 QUERY_INSTANCE_ENTRY_NOTSUPPORTED(L"SampleWinNET_BasketFruitMembership")
 END_ENUM_INSTANCE_MAP()

private:

 void OnBasketQuery(CWbemQuery& query, CWbemInstanceList& instList,
 LPWBEMMETHODCTX ptrs);

 ..

};

Implementing the query optimization function involves limiting the number of management objects and
properties returned to WMI. The optimization can include; only retrieving property values that have
been requested. i.e. SELECT Prop1, Prop2 FROM CIM_SomeClass WHERE PropA="Somevalue". Where the
only properties that are requested are Prop1 and Prop2 . However you should not forget to include PropA
because WMI will need this information to process more complex queries. The more common
optimization is to retrieve a subset of the relevant management objects. That is, evaluating the portion
of the query “PropA="Somevalue"” where Somevalue defines the scope of the query and will have a huge
impact on performance. Supporting both forms of optimization will increase the performance of the
provider. If the query is too complex, always result to retrieving all the management objects and
passing them to WMI. WMI will handle the query for you. Let’s look at an incomplete example of what
the function would look like:

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 13 of 25

void CFruitBasket::OnBasketQuery(CWbemQuery& query,
 CWbemInstanceList& instList,
 LPWBEMMETHODCTX ptrs)
{
 if (the basket exists)
 {
 // Add basket instance to instList
 // [Also, only get properties that are requested in either the
 // property list or the properties mentioned after the WHERE clause]
 }
 else
 {
 // Otherwise, the query is too complex for us so return all
 // instances to WMI and let it process the query
 OnBasketInstances(instList, ptrs);
 }
}

The query is passed in the query parameter. The management object enumeration is returned to WMI
through the instList parameter.

Providing management class and object methods

A WMI provider can also service WMI method requests. To provide method implementations for
management classes and objects, use the BEGIN_METHOD_MAP macro to start the mapping between
management method and the functions that will serve the request. Each management method
supported by the provider should have an entry in the map. The METHOD_ENTRY macro is used to route
management methods based on class name and method name to a function responsible with exposing
it. Finally, the management method map is completed with the END_METHOD_MAP macro. The following
code highlighted in bold shows the map and the functions that will expose the one and only
management method.

class CFruitBasket :

{
public:
 BEGIN_METHOD_MAP()
 METHOD_ENTRY(L"SampleWinNET_Fruit", L"AddFruitToBasket",
 OnFruitAddFruitToBasket)
 END_METHOD_MAP()

private:

 void OnFruitAddFruitToBasket(LPWBEMINSTANCE pInstance,
 LPCWSTR lpszObjectPath, CWbemMethod& rMethod, long lFlags);

 ..

};

To understand the basics of implementing a management method function, let’s look at a simple
example:

void CSomeProvider::OnExampleMethod(LPWBEMINSTANCE pInstance,
 LPCWSTR lpszObjectPath, CWbemMethod& rMethod, long lFlags)
{
 WMIFunc();

 bool bRetVal = true;

 try

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 14 of 25

 {
 // Get the method's in-parameters
 CComBSTR bstrInParam1 = BSTR(rMethod.GetInParam(L"InParam1"));
 CComBSTR bstrInParam2 = BSTR(rMethod.GetInParam(L"InParam2"));

 // TODO: Do something...

 // Set the method's out-parameters
 rMethod.SetOutParam(L"OutParam1", L"Some value");
 rMethod.SetOutParam(L"OutParam2", int(2));
 }
 WMICatch()

 // Set method's return value
 rMethod.Return(bRetVal);
}

The management method implementation first obtains the in-parameters for instruction about what to
do. This is followed by the actual task which is later followed by setting the management method’s out-
parameters including the return value. The following code is the implementation of the
OnFruitAddFruitToBasket method.

void CFruitBasket::OnFruitAddFruitToBasket(LPWBEMINSTANCE pInstance,
 LPCWSTR lpszObjectPath, CWbemMethod& rMethod, long lFlags)
{
 USES_CONVERSION;
 WMIFunc();

 bool bRetVal = false;

 try
 {
 // Get the method's in-parameters
 CComBSTR bstrBasketName = BSTR(rMethod.GetInParam(L"BasketName"));
 CComBSTR bstrFruitName = BSTR(rMethod.GetInParam(L"FruitName"));

 // Snsure that we have both parameters
 if (bstrBasketName.Length() > 0 && bstrFruitName.Length() > 0)
 {
 // Helper function to create a map of all the basket and
 // fruit items
 TBasketFruitMap mapFruit;
 GetEnumFruitMap(mapFruit);

 if (FindFruitInMap(bstrFruitName, mapFruit))
 {
 // We can't add the fruit item it is already added to a basket
 hr = WBEM_E_ALREADY_EXISTS;
 }
 else
 {
 // Fruit name not used. Can create and assign the item of fruit.
 wstring szBasketPath(L"Software\\WMIBookProv\\Basket\\");
 szBasketPath += bstrBasketName;

 // Create the basket if it doesn't already exist
 CRegKey regBasket;
 LONG lReg = regBasket.Create(HKEY_LOCAL_MACHINE,
 W2CT(szBasketPath.c_str()), NULL, REG_OPTION_NON_VOLATILE,

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 15 of 25

 KEY_WRITE);

 if (lReg == ERROR_SUCCESS)
 {
 // Add Fruit item to basket
 wstring szFruitPath(szBasketPath);
 szFruitPath += L"\\";
 szFruitPath += bstrFruitName;

 // Create and assign item of fruit
 CRegKey regFruit;
 LONG lReg = regFruit.Create(HKEY_LOCAL_MACHINE,
 W2CT(szFruitPath.c_str()), NULL, REG_OPTION_NON_VOLATILE,
 KEY_WRITE);

 if (lReg == ERROR_SUCCESS)
 bRetVal = true; // Used in WMI methods return value
 }
 }
 }
 }
 WMICatch()

 // Set method's return value
 rMethod.Return(bRetVal);
}

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 16 of 25

Framework public classes
The WMI Provider Framework consists of a number of C++ templates (Table 1) that help to quickly
implement instance, method and event WMI providers. Table 2 lists the classes that are used in the
C++ templates and provide easy access to management objects, paths, methods, etc… Table 3 lists
the functions that may be of use during a providers execution.

 Table 1: Provider COM interface C++ template classes

C++ template class Comment

IWbemProviderInitImpl This C++ template class implements the IWbemProviderInit
COM interface. It provides basic provider initialization.

IWbemServicesImpl This C++ template class implements the IWbemServices COM
interface. It provides basic provider implementation for all provider
instance and method operations. Implementation’s of each type of
operation is routed through macros to C++ functions responsible
for servicing the requests.

IWbemInternalEventProviderImpl This C++ template class implements the IWbemEventProvider
COM interface. It provides an implementation that allows the
provider to fire events from within other operations of the instance
or method provider.

 Table 2: Provider C++ classes

C++ class Comment

CWbemObjectPath A helper class that parses and creates object paths.

CWbemQuery A helper class to parse WQL and SQL management queries. This
helps to break down a query when implementing provider query
optimization.

CWbemInstance This class represents a management object.

CWbemInstanceList This class represents a collection of management objects.

CWbemMethod This class makes it easy to set and get method parameters when
implementing a method provider.

CWbemVariantCast A helper class to cast a VARIANT into a C++ equivalent type.

WBEMKEYREFS This is a structure used to represent a key property in an object
path.

 Table 3: Provider C++ helper functions

Helper functions Comment

GetThisComputerName Returns the current computer name.

GetClientBlanketName Returns the name of the user (principle) making the DCOM call.
This function is useful when implementing provider routing
methods to determine who is making the request.

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 17 of 25

IWbemProviderInitImpl template class

This class provides a basic provider initialization implementation. The derived class should override
OnInitialize for specific provider initialization. The m_spWbemServices member is the provider’s
management services interface provided by WMI. Here is the public interface of the template class:

template <class T>
class IWbemProviderInitImpl : public IWbemProviderInit
{
public:
 CComPtr<IWbemServices> m_spWbemServices;

 // You can derive from this in your base class
 void OnInitialize(LPWSTR wszUser, LONG lFlags, LPWSTR wszNamespace,
 LPWSTR wszLocale, IWbemContext *pCtx)
 {

 }

 STDMETHOD(Initialize)(LPWSTR wszUser, LONG lFlags,
 LPWSTR wszNamespace, LPWSTR wszLocale,
 IWbemServices *pNamespace, IWbemContext *pCtx,
 IWbemProviderInitSink *pInitSink);
};

Initialize method

STDMETHOD(Initialize)(LPWSTR wszUser, LONG lFlags,
 LPWSTR wszNamespace, LPWSTR wszLocale,
 IWbemServices *pNamespace, IWbemContext *pCtx,
 IWbemProviderInitSink *pInitSink)

This method adds a reference to the management services provided by WMI and stores it in the
m_spWbemServices member. The implementation of Initialize calls OnInitialize. This is where you
should add your own provider initialization.

IWbemServicesImpl template class

This template class implements the routing of management requests to the appropriate method
handler. The methods listed in the following class are the ones implemented by the template class. All
other methods return WBEM_E_NOT_SUPPORTED. Here is the public interface of the template class:

template <typename T>
class IWbemServicesImpl : public IWbemServices
{
public:
 STDMETHOD(GetObjectAsync)(const BSTR ObjectPath, long lFlags,
 IWbemContext *pCtx, IWbemObjectSink *pResponseHandler);

 STDMETHOD(PutInstanceAsync)(IWbemClassObject *pInst, long lFlags,
 IWbemContext *pCtx, IWbemObjectSink *pResponseHandler);

 STDMETHOD(DeleteInstanceAsync)(const BSTR ObjectPath, long lFlags,
 IWbemContext *pCtx, IWbemObjectSink *pResponseHandler);

 STDMETHOD(CreateInstanceEnumAsync)(const BSTR Class, long lFlags,
 IWbemContext *pCtx, IWbemObjectSink *pResponseHandler);

 STDMETHOD(ExecQueryAsync)(const BSTR QueryLanguage, const BSTR Query,
 long lFlags, IWbemContext *pCtx, IWbemObjectSink *pResponseHandler);

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 18 of 25

 STDMETHOD(ExecMethodAsync)(const BSTR strObjectPath, const BSTR strMethodName,
 long lFlags, IWbemContext *pCtx, IWbemClassObject *pInParams,
 IWbemObjectSink *pResponseHandler);

 LPWBEMINSTANCE CreateWbemInstance(LPWBEMMETHODCTX ptrs);
};

GetObjectAsync method

This method is implemented by using the following macros to route the request to a member function.

BEGIN_OBJECT_INSTANCE_MAP()
 OBJECT_INSTANCE_ENTRY(L"Sample_Class", OnObject)
END_OBJECT_INSTANCE_MAP()

The member function prototype is:

void OnObject(LPWBEMINSTANCE pInstance, long lFlags);

The requested management object specified using key properties is passed in through pInstance and it
is the provider’s responsibility to set the remaining non-key properties of the management object.

PutInstanceAsync method

This method is implemented by using the following macros to route the request to a member function.

BEGIN_PUT_INSTANCE_MAP()
 PUT_INSTANCE_ENTRY(L"Sample_Class", OnPut)
 PUT_INSTANCE_ENTRY_NOTSUPPORTED(L"Sample_OtherClass")
END_PUT_INSTANCE_MAP()

The member function prototype is:

void OnPut(LPWBEMINSTANCE pInstance, long lFlags);

The new or updated management object is passed in through pInstance and it is the provider’s
responsibility to persist the changes depending on the flags passed in by lFlags. If the provider
supports a management class, but not for this operation, it should declare it using,
PUT_INSTANCE_ENTRY_NOTSUPPORTED.

DeleteInstanceAsync method

This method is implemented by using the following macros to route the request to a member function.

BEGIN_DELETE_INSTANCE_MAP()
 DELETE_INSTANCE_ENTRY(L"Sample_Class", OnDelete)
 DELETE_INSTANCE_ENTRY_NOTSUPPORTED(L"Sample_OtherClass")
END_DELETE_INSTANCE_MAP()

The member function prototype is:

void OnDelete(LPWBEMINSTANCE pInstance, long lFlags);

The management object to be deleted is passed in through pInstance and it is the provider’s
responsibility to read the key properties and remove the object. If the provider supports a management
class, but not for this operation, it should declare it using, DELETE_INSTANCE_ENTRY_NOTSUPPORTED .

CreateInstanceEnumAsync method

This method is implemented by using the following macros to route the request to a member function.

BEGIN_ENUM_INSTANCE_MAP()
 ENUM_INSTANCE_ENTRY(L"Sample_Class", OnInstances)

END_ENUM_INSTANCE_MAP()

The member function prototype is:

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 19 of 25

void OnInstances(CWbemInstanceList& instList, LPWBEMMETHODCTX ptrs);

Management objects are returned through instList and the current context is passed through ptrs.
The context is always used when making calls back to WMI from within a provider. The context may
also have additional context provided by the client/caller that the provider can understand.

ExecQueryAsync method

This method is implemented by using the following macros to route the request to a member function.

BEGIN_QUERY_INSTANCE_MAP()
 QUERY_INSTANCE_ENTRY(L"Sample_Class", OnQuery)

 QUERY_INSTANCE_ENTRY_NOTSUPPORTED(L"Sample_OtherClass")
END_ENUM_INSTANCE_MAP()

The member function prototype is:

 void OnQuery(CWbemQuery& query, CWbemInstanceList& instList, LPWBEMMETHODCTX ptrs);

The management query is passed in through query and the CWbemQuery class can be used to parse it.
Management objects are returned through instList and the current context is passed through ptrs.
The context is always used when making calls back to WMI from within a provider. The context may
also have additional context provided by the client/caller that the provider can understand. If the
provider supports a management class, but not for this operation, it should declare it using,
QUERY_INSTANCE_ENTRY_NOTSUPPORTED.

ExecMethodAsync method

This method is implemented by using the following macros to route the request to a member function.

BEGIN_METHOD_MAP()
 METHOD_ENTRY(L"Sample_Class", L"SomeMethod", OnSomeMethod)
END_METHOD_MAP()

The member function prototype is:

 void OnSomeMethod(LPWBEMINSTANCE pInstance, LPCWSTR lpszObjectPath,
 CWbemMethod& rMethod, long lFlags);

If the method pertains to a management object, then the provider should get the key properties from
pInstance to identify which object the method needs to execute against. If you need to the object path,
then you can get at it directly through lpszObjectPath . The method’s in and out parameters and be
obtained and set through rMethod.

CreateWbemInstance method

LPWBEMINSTANCE CreateWbemInstance(LPWBEMMETHODCTX ptrs);

This helper method creates an instance of the same type as that identified by the provider’s context.
The caller is responsible for releasing the return value.

IWbemInternalEventProviderImpl template class

This template class is only for use within a WMI instance of method provider. On many occasions, a
provider may want to fire an event while it is processing a request. The provider should call FireEvent
whenever it is ready to fire an event. Here is the public interface of the template class:

template <class T>
class IWbemInternalEventProviderImpl : public IWbemEventProvider
{
public:
 CComPtr<IWbemObjectSink> m_spEventSink;

public:
 STDMETHOD(ProvideEvents)(IWbemObjectSink *pSink, long lFlags);

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 20 of 25

 void FireEvent(CWbemInstance& event);
};

FireEvent method

void FireEvent(CWbemInstance& event);

This method fires an event within an instance or method provider. The event to be fired should be
passed in event . Let’s look at an example of how you can do this to fire a new fruit basket
__InstanceCreationEvent event.

//
// Basket just created! Fire event
//
CWbemInstance event;
pInstance->CreateInstanceOfClass(L"__InstanceCreationEvent", event);

// Set target instance management object
CWbemInstance eventTargetInst;
pInstance->CreateInstanceOfClass(L"SampleWin2K_Basket", eventTargetInst);
eventTargetInst.SetProperty(L"Name", bstrBasketName);
eventTargetInst.SetProperty(L"Capacity", int(0));

CComPtr<IWbemClassObject> spTargetInst;
eventTargetInst.GetInstance(&spTargetInst);

CComPtr<IUnknown> spUnk;
spTargetInst.QueryInterface(&spUnk);
CComVariant varTargetInst(spUnk);

// Add target instance to event
event.SetProperty(L"TargetInstance", varTargetInst);

// Fire management event
FireEvent(event);

If you are planning to fire events within a provider, remember to inherit from it. For example:

class CFruitBasket :
 public CComObjectRoot,
 public CComCoClass<CFruitBasket,&CLSID_FruitBasket>,
 public IWbemProviderInitImpl<CFruitBasket>,
 public IWbemServicesImpl<CFruitBasket>,
 public IWbemInternalEventProviderImpl<CFruitBasket>
{
public:
 CFruitBasket() {}

 ..
};

Don’t forget to setup the .mof file to register your provider as an event provider. For more information
on how to do this, go to Chapter 12.

CWbemObjectPath class

This class helps you to parse management object paths. The meaning of the methods in the class
below should be intuitive and easy to understand. The Windows 2000 version of this class defers
slightly but produces the same functionality.

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 21 of 25

class CWbemObjectPath
{
public:
 CWbemObjectPath(LPCWSTR lpszPath);
 ~CWbemObjectPath();

 void GetClassName(CComBSTR& bstrClass);

 bool IsKeyValid(DWORD dwKeyIndex);
 bool GetKey(DWORD dwKeyIndex, CComBSTR& bstrKeyName);
 bool GetKeyVariant(DWORD dwKeyIndex, CComVariant& varKeyValue);
 bool GetKeyVariant(LPCWSTR lpszPropName, CComVariant& varPropValue);

 // Helper to get at the implementation provided by the WMI
 void GetObjectPath(IWbemPath** ppPath);
 void GetObjectPathKeyList(IWbemPathKeyList** ppKeyList);
};

CWbemQuery class

This class helps you to parse management queries. The implementation of this class is limited under
Windows XP/Server 2003 because it uses the query facilities provided by WMI. Refer to MSDN for
more information. The Windows 2000 version provides many more methods to extract details of the
query.

class CWbemQuery
{
public:
 CWbemQuery(LPCWSTR lpszWQLQuery, LPCWSTR lpszQueryLang = L"WQL");

 // ** NOTE!! This is a weak reference!!!
 void GetParsedQuery(SWbemRpnEncodedQuery** ppEncodedQuery);

 void ExtractClass(wstring& rszClass);
};

CWbemInstance class

This class includes common operations that you might want to perform with a management object. It is
used by the provider framework and has some useful helper functions. Here is the public interface of
the class:

class CWbemInstance
{
public:
 CWbemInstance();
 CWbemInstance(IWbemClassObject* pInst);
 CWbemInstance(LPWBEMMETHODCTX ptrs);

 void Create(IWbemClassObject* pInst);
 void Create(LPCWSTR lpszClassName, LPCWSTR lpszNamespace = L"root\\CIMV2");
 void Create(LPWBEMMETHODCTX ptrs, LPCWSTR lpszNamespace = L"root\\CIMV2");

 void CreateInstanceByKeyPath(LPCWSTR lpszObjectPath, CWbemInstance& rInst);
 void CreateFakeInstanceByKeyPath(LPCWSTR lpszObjectPath, CWbemInstance& rInst);
 void CreateInstanceOfClass(LPCWSTR lpszClass, CWbemInstance& rInst);

 CWbemVariantCast GetProperty(LPCWSTR lpszPropName);
 void GetPropertyVariant(LPCWSTR lpszPropName, VARIANT* pValue);

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 22 of 25

 template <class ValType>
 void SetProperty(LPCWSTR lpszPropName, ValType value);
 void SetPropertyVariant(LPCWSTR lpszPropName, VARIANT* pValue);

 void SetObjPathProperty(LPCWSTR lpszClassName, LPCWSTR lpszPropName,
 WBEMKEYREFS ppKeyRefs[], int nCount);

 void Indicate();

 void GetInstance(IWbemClassObject** ppInstance);
 IWbemClassObject* GetInstanceWeakReference();
};

Create method

These methods setup a CWbemInstance object.

void Create(IWbemClassObject* pInst);
void Create(LPCWSTR lpszClassName, LPCWSTR lpszNamespace = L"root\\CIMV2");
void Create(LPWBEMMETHODCTX ptrs, LPCWSTR lpszNamespace = L"root\\CIMV2");

The first method basically attaches an existing management object to the class and adds a reference.
The second method creates a new instance of a specific class and attaches to it. The third method
creates a new instance of the class specified by the context and attaches to it.

CreateInstanceByKeyPath method

This helper method performs an IWbemServices::GetObject call and attaches to the returned
management object.

void CreateInstanceByKeyPath(LPCWSTR lpszObjectPath, CWbemInstance& rInst);

Pass the object path into the lpszObjectPath parameter and if successful, the management object is
returned through rInst.

CreateFakeInstanceByKeyPath method

This helper method creates an in-memory instance of the management object represented by the
object path. The key properties in the object path are set as properties on the newly created instance.
This is useful when you want an IWbemClassObject of the supposed management object.

void CreateFakeInstanceByKeyPath(LPCWSTR lpszObjectPath, CWbemInstance& rInst);

Pass the object path into the lpszObjectPath parameter and if successful, the fake management object
is returned through rInst.

CreateInstanceOfClass method

This helper method creates a new instance of a specific class.

void CreateInstanceOfClass(LPCWSTR lpszClass, CWbemInstance& rInst);

Pass the class reference into the lpszClass parameter and if successful, the new instance is returned
through rInst.

GetProperty and GetPropertyVariant methods

These methods return the value of a management object property.

CWbemVariantCast GetProperty(LPCWSTR lpszPropName);
void GetPropertyVariant(LPCWSTR lpszPropName, VARIANT* pValue);

The first method returns the property value through CWbemVariantCast which casts VARIANT data types
to C++ data types. The second method returns the raw variant value for the property. This is useful for
dealing with SAFEARRAY-based VARIANTs.

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 23 of 25

SetProperty and SetPropertyVariant methods

These methods set the value of a management object property.

template <class ValType>
void SetProperty(LPCWSTR lpszPropName, ValType value);
void SetPropertyVariant(LPCWSTR lpszPropName, VARIANT* pValue);

The first method sets the property value by using CComVariant’s constructor. This enables you to use
C++ data types for many of the properties you’re likely to come across. The second method sets a raw
variant value for the property. This is useful for dealing with SAFEARRAY-based VARIANTs.

SetObjPathProperty method

This helper method helps you set properties that are management object references.

void SetObjPathProperty(LPCWSTR lpszClassName, LPCWSTR lpszPropName,
 WBEMKEYREFS ppKeyRefs[], int nCount);

The name of the management class that will be referenced is passed through lpszClassName and the
name of the property in the attached instance (i.e. the class that contains the reference) is passed
through lpszPropName. For each key property of the class passed in through lpszClassName must be
setup. The number of array elements in ppKeyRefs is passed through nCount . The following is an extract
from some code described earlier in this article.

// Basket reference
WBEMKEYREFS keyRef[1];
keyRef[0].lpszKeyRefName = L"Name";
keyRef[0].cimtypeValue = CIM_STRING;
keyRef[0].varKeyRefValue =
 CComVariant((*itrFruit).second.szBasketName.c_str());

pInst->SetObjPathProperty(L"SampleWinNET_Basket", L"Basket", keyRef, 1);

Indicate method

This method is used to pass the management object to WMI.

void Indicate();

GetInstance and GetInstanceWeakReference methods

These methods return the attached IWbemClassObject instance.

 void GetInstance(IWbemClassObject** ppInstance);
 IWbemClassObject* GetInstanceWeakReference();

Calling GetInstance adds a reference and GetInstanceWeakReference doesn’t.

CWbemInstanceList class

This class holds a collection of management objects. Calling Add will include the management object
specified through pInst to the collection. If an object of the class is setup with a WMI provided sink, Add
also calls Indicate to pass the management object to WMI. DeleteAll removes all the management
object references from the collection.

class CWbemInstanceList : public std::list<LPWBEMINSTANCE>
{
public:
 CWbemInstanceList(IWbemObjectSink* pResponse = NULL);
 ~CWbemInstanceList();

 void Add(CWbemInstance* pInst);
 void DeleteAll();
};

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 24 of 25

CWbemMethod class

This class represents a method. You can get the method’s in-parameters by calling GetInParam and the
out-parameters can be set using SetOutParam. Use Return to set the methods return value.

class CWbemMethod
{
public:
 CWbemMethod();
 CWbemMethod(LPWBEMMETHODCTX ptrs, LPCWSTR lpszMethodName,
 IWbemClassObject* pInParams);

 CWbemVariantCast GetInParam(LPCWSTR lpszPropName);

 template <typename ValType>
 void SetOutParam(LPCWSTR lpszPropName, ValType value);

 template <typename ValType>
 void Return(ValType value);
};

ExecMethodAsync method

This method is implemented by using the following macros to route the request to a member function.

CWbemVariantCast class

This class converts VARIANTs to C++ data types. The class below shows which data types are
converted.

class CWbemVariantCast
{
public:
 CWbemVariantCast(CComVariant& v, bool bTakeOwnership = false);
 CWbemVariantCast(const VARIANT& v);

 operator int();
 operator long();
 operator UINT();
 operator DWORD();
 operator BYTE();
 operator short();
 operator bool();
 operator BSTR();
};

WBEMKEYREFS class

Although not for public use, this class allows the provider’s control callback function to set current
provider state and also set session handles in shared memory. This is then accessed by the
CTraceEvent class when tracing events. This implementation design allows DLLs and COM components
to fire events for the tracing session held by the provider.

struct WBEMKEYREFS
{
 LPCWSTR lpszKeyRefName;
 CIMTYPE cimtypeValue;
 CComVariant varKeyRefValue;
};

http://www.wbem.co.uk

Gwyn Cole WMI Provider Application Framework Page 25 of 25

GetThisComputerName function

This returns the name of the current machine through rszName.

inline bool GetThisComputerName(wstring& rszName);

GetClientBlanketName function

This returns the name of the principle/user who is accessing the provider through szPrincipleName.

inline void GetClientBlanketName(wstring& szPrincipleName)

